MCSP is Hard for Read-Once Nondeterministic Branching Programs

Branching program
(acyclic directed graph

- Two sinks: 1 -sink and 0 -sink
- All vertices labeled by variables
• Value: sink label at the end of the path that
corr. to the subst.

Nondeterministic branching program
Has nodes without labels
Value equals one if there exists a path

Size $=$ number of labeled nodes

Read-once branching program
Every path has only l occurrence of each variable

Minimum Circuit Size Problem
Input:

- truth table of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$
- size parameter s

Output
yes, if f can be computed by a circuit of size at most s

In a Partial MCSP input is a truth-table of a partial f

Hardness of MCSP for BPs implications
Theorem: if MCSP cannot be computed by a branching program of size $N^{2.01}$ then $\mathrm{NP} \not \subset C$-SIZE $\left[n^{k}\right]$ for all k [Chen, Jin, Williams, 2019]

The best lower bound: $\operatorname{BP}(E D)=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$ [Nechiporuk, 1966]
To develop new techniques to show lower bounds for BPs we study hardness of restricted versions of BP
($\mathrm{n} \times \mathrm{n}$)-Bipartite Permutation Independent Set Problem

- Graph with $2 \mathrm{n} \times 2 \mathrm{n}$ vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from

Need to find exactly one vertex from
every row, and exactly one vertex from every column, such that

- These vertices are from the two quadrants - These vertices form independent set

Ludmila Glinskih and Artur Riazanov
 Boston University EPFL

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
This result is tight for MCSP with linear size parameter.
To prove this lower bound we adapt a framework from the work [Ilango 2020], in which the author showed an ETH-hardness of partial MCSP.

Main result
Sketch of the proof of the Theorem:
Assume there is a small 1-NBP computing MCSP. As the sizes of 1-NBP for MCSP and Partial MCSP are polynomially related, there is a small 1-NBP computing Partial MCSP.
Then, from this small 1-NBP for Partial MCSP we can get a small read-once 1NBP for ($\mathrm{n} \times \mathrm{n}$)-BPIS. Which is impossible unconditionally. Hence, MCSP cannot be computed by a small 1-NBP.

Unconditionally
Exp-time reduction

Computable by 1-BP
hard for 1-NBP

Lemma: size of 1-NBP computing an $(\mathrm{n} \times n)$-BPIS is $2^{\Omega(n \log n)}$

Idea of the proof:

- Show that the minimum 1-NBP

Show that the minimum 1-NBP for BPIS has the same size as the
minimum 1-NBP for Bipartite Permutation Clique

- Adapt the proof of the lower bound on 1-NBP for Clique_Only to get a lower bound on BPC
- BPC is like "clique" wits permutations

Lemma: ($\mathrm{n} \times \mathrm{n}$)-BPIS is 1 -BP reducible to Partial MCSP

Partial MCSP computes dependency
on the edges of BPIS

Partial MCSP

Have the same

1-NBP complexity

Lemma: the size of the minimal 1-NBP computing Partial MCSP equals the size of the minimal $1-\mathrm{NBP}$ computing MCSP

1-NBP for MCSP

Upper Bound

Future work

Show tight lower bound for MCSP with higher size parameters

- The same technique cannot work, as we cannot construct a truth The same technique cannot work, as we cannot construct a tru
table of a function with higher than linear circuit complexity
Lemma: MCSP on an input of length 2^{n} with
be computed by a $1-$ NBP of size $2^{n} 2^{O(s \log s)}$
Corollary: our $2^{\Omega(n \log n)}$ lower bound is tight for inputs with a linear size parameter

Extend this result to other models of computations

- For any model in which ($\mathrm{n} \times \mathrm{n}$)-BPIS is hard and the reduction to the truth table is efficiently computable the same size lower bound will hold

