MCSP is Hard for Read-Once Nondeterministic Branching Programs

Ludmila Glinskih

Boston University

Artur Riazanov
EPFL

LATIN 2022

Outline

- Minimum Circuit Size Problem
- Branching Programs
- Our result: every 1-NBP computing MCSP has superpolynomial size
- Technique

Minimum Circuit Size Problem

Input:

1	0	0	1	0	1	1	0	\ldots	1

- truth table of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Truth table of f of length $N=2^{n}$

Minimum Circuit Size Problem

Input:

1	0	0	1	0	1	1	0	\ldots	1

- truth table of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\} \quad$ Truth table of f of length $N=2^{n}$
- size parameter s

Minimum Circuit Size Problem

Input:

1	0	0	1	0	1	1	0	\ldots	1

- truth table of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Truth table of f of length $N=2^{n}$

- size parameter s

Output:

yes, if f can be computed by a circuit of size at most s

Hardness of MCSP

- MCSP is in $N P$

Guess a circuit and check, whether it computes f or not

Hardness of MCSP

- MCSP is in $N P$

Guess a circuit and check, whether it computes f or not

- MCSP $\in P \Rightarrow$ no strong PRGs [Razborov, Rudich, 1994]

Hardness of MCSP

- MCSP is in $N P$

Guess a circuit and check, whether it computes f or not

- MCSP $\in P \Rightarrow$ no strong PRGs [Razborov, Rudich, 1994]
- MCSP is $N P$-complete \Rightarrow EXP $\neq Z P P$ [Murray, Williams, 2015]

Hardness of MCSP

- MCSP is in $N P$

Guess a circuit and check, whether it computes f or not

- MCSP $\in P \Rightarrow$ no strong PRGs [Razborov, Rudich, 1994]
- MCSP is $N P$-complete \Rightarrow EXP $\neq Z P P$ [Murray, Williams, 2015]
- Complexity of MCSP in restricted classes is important too:

If MCSP cannot be computed by

- a branching program of size $N^{2.01}$
- formula of size $N^{3.01}$
- circuit of size $N^{1.01}$

Then NP $\not \subset C$-SIZE $\left[n^{k}\right]$ for all k [Chen, Jin, Williams, 2019]

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

- $A C^{0}(\mathrm{MCSP})=2^{\Omega\left(N^{\frac{1}{d}}\right)}$
[Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

- $A C^{0}(\mathrm{MCSP})=2^{\Omega\left(N^{\frac{1}{d}}\right)} \quad$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
- $A C^{0}[\bmod \mathrm{p}](\mathrm{MCSP})=2^{\Omega\left(N^{\frac{0.49}{d}}\right)}$ [Golovnev, Ilango, Impagliazzo, Kabanets, Kolokolova, Tal, 2019]

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

- $A C^{0}(\mathrm{MCSP})=2^{\Omega\left(N^{\frac{1}{d}}\right)} \quad$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
 Kolokolova, Tal, 2019]
- 1-coNBP(MCSP) $=2^{\Omega(N)}$ [Cheraghchi, Hirahara, Myrisiotis, Yoshida, 2019]

Branching program

- BP is a way to represent Boolean function:
- directed graph without cycles
- one source
- two sinks: labeled with 0 and 1
- all other vertices labeled with variables
- values of variables on edges
- Size of a BP is a number of vertices

Branching program

- BP is a way to represent Boolean function:
- directed graph without cycles
- one source
- two sinks: labeled with 0 and 1
- all other vertices labeled with variables
- values of variables on edges
- Size of a BP is a number of vertices

Branching program

- BP is a way to represent Boolean function:
- directed graph without cycles
- one source
- two sinks: labeled with 0 and 1
- all other vertices labeled with variables
- values of variables on edges
- Size of a BP is a number of vertices

Branching program

- BP is a way to represent Boolean function:
- directed graph without cycles
- one source
- two sinks: labeled with 0 and 1
- all other vertices labeled with variables
- values of variables on edges
- Size of a BP is a number of vertices

Branching program

- BP is a way to represent Boolean function:
- directed graph without cycles
- one source
- two sinks: labeled with 0 and 1
- all other vertices labeled with variables
- values of variables on edges
- Size of a BP is a number of vertices

Non-deterministic branching program

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Non-deterministic branching program

$$
\begin{aligned}
& a=1 \\
& b=0
\end{aligned}
$$

- NBP additionally has non-deterministic nodes:
- non-deterministic nodes are unlabeled
- the value equals $1 \Leftrightarrow$ exists a path to 1 -sink

Complexity class with logarithmic space

- $\operatorname{BP}(f)=$ poly $\Leftrightarrow f$ is in $\mathrm{L} /$ poly

Complexity class with logarithmic space

- $\operatorname{BP}(f)=$ poly $\Leftrightarrow f$ is in $\mathrm{L} /$ poly
$\mathrm{BP}(\mathrm{f})$ is a BP complexity of f

Complexity class with logarithmic space

- $\operatorname{BP}(f)=$ poly $\Leftrightarrow f$ is in $\mathrm{L} /$ poly
$\mathrm{BP}(\mathrm{f})$ is a BP complexity of f
- NBP corresponds to NL/poly

Best lower bounds for branching programs

- At least a $1-\frac{1}{2^{n}}$ fraction of functions require BP size $\frac{2^{n}}{4 n}$

Best lower bounds for branching programs

- At least a $1-\frac{1}{2^{n}}$ fraction of functions require BP size $\frac{2^{n}}{4 n}$
- The best lower bound: $\operatorname{BP}(\mathrm{ED})=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$ [Nechiporuk, 1966]

Best lower bounds for branching programs

- At least a $1-\frac{1}{2^{n}}$ fraction of functions require BP size $\frac{2^{n}}{4 n}$
- The best lower bound: $\operatorname{BP}(E D)=\Omega\left(\frac{n^{2}}{\log ^{2} n}\right)$ [Nechiporuk, 1966]
- Recent results:
- BP(MCSP) $=\widetilde{\Omega}\left(N^{2}\right)$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
- Barrier on proving better than $\widetilde{\Omega}\left(N^{2}\right)$ for MCSP [Chen, Jin, Williams, 2019]

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) $=2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) $=2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]
- 1-NBP $\left(\oplus_{\Delta}\right)=2^{\Omega(n)}$ [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
- \oplus_{Δ} parity of triangles in a graph

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) $=2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]
- 1-NBP $\left(\oplus_{\Delta}\right)=2^{\Omega(n)}$ [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
- \oplus_{Δ} parity of triangles in a graph
- $1-\mathrm{NBP}($ coMCSP $)=2^{\Omega(N)}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

Known lower bounds for 1-NBPs

- 1-NBP(CLIQUE_ONLY) $=2^{\Omega(\sqrt{n})}$ [Borodin, Razborov, Smolensky, 1993]
- 1-NBP $\left(\oplus_{\Delta}\right)=2^{\Omega(n)}$ [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
- \oplus_{Δ} parity of triangles in a graph
- 1-NBP(coMCSP) $=2^{\Omega(N)}$ [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

MCSP naturally a nondeterministic problem, so it is harder to prove a lower bound against NBP

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$
($\mathrm{n} \times \mathrm{n}$)-Bipartite
Independent Set
Problem

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$
($\mathrm{n} \times \mathrm{n}$)-Bipartite
Independent Set
Problem
ETH-hard

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

Main result

Theorem: size of 1-NBP computing MCSP is $\left.N^{\Omega(\log \log N}\right)$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

> This result is tight for MCSP with linear size parameter

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)^{\prime}}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

This result is tight for MCSP with linear size parameter

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

> This result is tight for MCSP with linear size parameter

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

> This result is tight for MCSP with linear size parameter

Main result

Theorem: size of 1-NBP computing MCSP is $N^{\Omega(\log \log N)}$
Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP* requires time $N^{\Omega(\log \log N)}$

($\mathrm{n} \times \mathrm{n}$)-Bipartite Permutation Independent Set (BPIS)

- Graph with $2 \mathrm{n} \times 2 \mathrm{n}$ vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
- These vertices are from the two quadrants
- These vertices form independent set

($\mathrm{n} \times \mathrm{n}$)-Bipartite Permutation Independent Set (BPIS)

- Graph with $2 \mathrm{n} \times 2 \mathrm{n}$ vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
- These vertices are from the two quadrants
- These vertices form independent set

($\mathrm{n} \times \mathrm{n}$)-Bipartite Permutation Independent Set (BPIS)

- Graph with $2 \mathrm{n} \times 2 \mathrm{n}$ vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
- These vertices are from the two quadrants
- These vertices form independent set

($\mathrm{n} \times \mathrm{n}$)-Bipartite Permutation Independent Set (BPIS)

- Graph with $2 \mathrm{n} \times 2 \mathrm{n}$ vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
- These vertices are from the two quadrants
- These vertices form independent set

($\mathrm{n} \times \mathrm{n}$)-Bipartite Permutation Independent Set (BPIS)

- Graph with $2 \mathrm{n} \times 2 \mathrm{n}$ vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
- These vertices are from the two quadrants
- These vertices form independent set

($\mathrm{n} \times \mathrm{n}$)-BPIS is hard for $1-\mathrm{NBP}$

Lemma: size of 1-NBP computing an ($\mathrm{n} \times \mathrm{n}$)-BPIS is $2^{\Omega(n \log n)}$

($\mathrm{n} \times \mathrm{n}$)-BPIS is hard for $1-\mathrm{NBP}$

Lemma: size of 1-NBP computing an ($\mathrm{n} \times \mathrm{n}$)-BPIS is $2^{\Omega(n \log n)}$

Idea of the proof:

- Show that the minimum 1-NBP for Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for Bipartite Permutation Clique

($\mathrm{n} \times \mathrm{n}$)-BPIS is hard for $1-\mathrm{NBP}$

Lemma: size of $1-$ NBP computing an $(\mathrm{n} \times \mathrm{n})$-BPIS is $2^{\Omega(n \log n)}$

Idea of the proof:

- Show that the minimum 1-NBP for Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for Bipartite Permutation Clique
- Adapt the proof of the lower bound on 1-NBP for CLIQUE_ONLY to get a lower bound on BPC

Progress so far

1-NBP for MCSP* can be transformed to 1-NBP for BPIS

$$
\gamma(x, y, z)= \begin{cases}\mathrm{V}_{i \in[2 n]}\left(y_{i} \wedge z_{i}\right) & , \text { if } x=0^{2 n} \\ \mathrm{~V}_{i \in[2 n]} z_{i} & \text {, if } x=1^{2 n} \\ \mathrm{~V}_{\in \in[2 n]}\left(x_{i} \vee y_{i}\right) & \text {, if } z=1^{2 n} \\ 0 & \text {, if } z=0^{2 n} \\ \mathrm{R}_{n}\left(x_{1}, \ldots, x_{n}\right) & \text {, if } z=1^{n} 0^{n} \text { and } y=0^{2 n} \\ \mathrm{RR}_{n}\left(x_{n+1}, \ldots, x_{2 n}\right), \text { if } z=0^{n^{n}} \text { and } y=0^{2 n} \\ 1 & \text {,if } \exists\left((j, k),\left(j^{\prime}, k^{\prime}\right)\right) \in E \text { such that }(x, y, z)=\left(\overline{e_{k} e_{k^{\prime}},} 0^{2 n}, e_{j} e_{j^{\prime}}\right) \\ \star & , \text { otherwise }\end{cases}
$$

1-NBP for MCSP* can be transformed to 1-NBP for BPIS

$$
\begin{aligned}
\\
\gamma(x, y, z)= \begin{cases}\bigvee_{i \in[2 n]}\left(y_{i} \wedge z_{i}\right) & , \text { if } x=0^{2 n} \\
\bigvee_{i \in[2 n]} z_{i} & , \text { if } x=1^{2 n} \\
\bigvee_{i \in[2 n]}\left(x_{i} \vee y_{i}\right) & , \text { if } z=1^{2 n} \\
0 & , \text { if } z=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{1}, \ldots, x_{n}\right) & , \text { if } z=1^{n} 0^{n} \text { and } y=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{n+1}, \ldots, x_{2 n}\right) & , \text { if } z=0^{n} 1^{n} \text { and } y=0^{2 n} \\
\begin{array}{ll}
1 & , \text { if } \exists\left((j, k),\left(j^{\prime}, k^{\prime}\right)\right) \in E \text { such that }(x, y, z)=\left(\overline{e_{k} e_{k^{\prime}}}, 0^{2 n}, e_{j} e_{j^{\prime}}\right) \\
\star & , \text { otherwise }
\end{array} \\
\text { Only these bits of the } \\
\text { truth table depend } \\
\text { on the input bits of BPIS }\end{cases}
\end{aligned}
$$

1-NBP for MCSP* can be transformed to 1-NBP for BPIS

$$
\begin{aligned}
\\
\gamma(x, y, z)= \begin{cases}\bigvee_{i \in[2 n]}\left(y_{i} \wedge z_{i}\right) & , \text { if } x=0^{2 n} \\
\bigvee_{i \in[2 n]} z_{i} & , \text { if } x=1^{2 n} \\
\bigvee_{i \in[2 n]}\left(x_{i} \vee y_{i}\right) & , \text { if } z=1^{2 n} \\
0 & , \text { if } z=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{1}, \ldots, x_{n}\right) & , \text { if } z=1^{n} 0^{n} \text { and } y=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{n+1}, \ldots, x_{2 n}\right) & , \text { if } z=0^{n} 1^{n} \text { and } y=0^{2 n} \\
\begin{array}{ll}
1 & , \text { if } \exists\left((j, k),\left(j^{\prime}, k^{\prime}\right)\right) \in E \text { such that }(x, y, z)=\left(\overline{e_{k} e_{k^{\prime}}}, 0^{2 n}, e_{j} e_{j^{\prime}}\right) \\
\star & , \text { otherwise }
\end{array} \\
\text { Only these bits of the } \\
\text { truth table depend } \\
\text { on the input bits of BPIS }\end{cases}
\end{aligned}
$$

1-NBP for MCSP* can be transformed to 1-NBP for BPIS

$$
\begin{gathered}
\begin{cases}\bigvee_{i \in[2 n]}\left(y_{i} \wedge z_{i}\right) & , \text { if } x=0^{2 n} \\
\bigvee_{i \in[2 n]} z_{i} & , \text { if } x=1^{2 n} \\
\bigvee_{i \in[2 n]}\left(x_{i} \vee y_{i}\right) & , \text { if } z=1^{2 n} \\
0 & , \text { if } z=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{1}, \ldots, x_{n}\right) & , \text { if } z=1^{n} 0^{n} \text { and } y=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{n+1}, \ldots, x_{2 n}\right) & , \text { if } z=0^{n} 1^{n} \text { and } y=0^{2 n} \\
\begin{array}{ll}
1 & , \text { if } \exists\left((j, k),\left(j^{\prime}, k^{\prime}\right)\right) \in E \text { such that }(x, y, z)=\left(\overline{e_{k} e_{k^{\prime}}}, 0^{2 n}, e_{j} e_{j^{\prime}}\right) \\
\star & , \text { otherwise }
\end{array} \\
\text { Only these bits of the } \\
\text { onuth table depend } \\
\text { on the input bits of BPIS }\end{cases} \\
\hline
\end{gathered}
$$

1-NBP for MCSP* can be transformed to 1-NBP for BPIS

$$
\gamma(x, y, z)= \begin{cases}\bigvee_{i \in[2 n]}\left(y_{i} \wedge z_{i}\right) & , \text { if } x=0^{2 n} \\
\bigvee_{i \in[2 n]} z_{i} & , \text { if } x=1^{2 n} \\
\bigvee_{i \in[2 n]}\left(x_{i} \vee y_{i}\right) & , \text { if } z=1^{2 n} \\
0 & , \text { if } z=0^{2 n} \\
\operatorname{OR}_{n}\left(x_{1}, \ldots, x_{n}\right) & , \text { if } z=1^{n} 0^{n} \text { and } y=0^{2 n} \\
\mathrm{OR}_{n}\left(x_{n+1}, \ldots, x_{2 n}\right) & , \text { if } z=0^{n} 1^{n} \text { and } y=0^{2 n} \\
\begin{array}{ll}
1 & , \text { if } \exists\left((j, k),\left(j^{\prime}, k^{\prime}\right)\right) \in E \text { such that }(x, y, z)=\left(\overline{e_{k} e_{k^{\prime}}}, 0^{2 n}, e_{j} e_{j^{\prime}}\right) \\
\star & , \text { otherwise }
\end{array} \\
\begin{array}{ll}
\text { Only these } b \\
\text { truth table }
\end{array} \\
\hline \text { on the input }\end{cases}
$$

Almost finished

MCSP* and MCSP have the same 1-NBP complexity

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal $1-$ NBP computing MCSP

MCSP* and MCSP have the same 1-NBP complexity

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal $1-$ NBP computing MCSP

1-NBP for MCSP*

MCSP* and MCSP have the same 1-NBP complexity

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal $1-$ NBP computing MCSP

MCSP* and MCSP have the same 1-NBP complexity

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal $1-$ NBP computing MCSP

MCSP* and MCSP have the same 1-NBP complexity

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the minimal $1-$ NBP computing MCSP

Putting all together

Upper bound

Lemma: MCSP on an input of length 2^{n} with a size parameter s can be computed by a $1-\mathrm{NBP}$ of $\operatorname{size} 2^{n} 2^{O(s \log s)}$

Upper bound

Simple guess and check strategy

Lemma: MCSP on an input of length 2^{n} with a size parameter s can be computed by a $1-$ NBP of $\operatorname{size} 2^{n} 2^{O(s \log s)}$

Upper bound

Simple guess and check strategy

Lemma: MCSP on an input of length 2^{n} with a size parameter s can be computed by a $1-$ NBP of $\operatorname{size} 2^{n} 2^{O(s \log s)}$

Corollary: our $2^{\Omega(n \log n)}$ lower bound is tight for inputs with a linear size parameter

Open questions

- Show tight lower bound for MCSP with higher size parameters
- The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity

Open questions

- Show tight lower bound for MCSP with higher size parameters
- The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity
- Extend this result to other models of computations
- For any model in which ($\mathrm{n} \times \mathrm{n}$)-BPIS is hard and the reduction to the truth table is efficiently computable the same size lower bound will hold

Partial Minimum Circuit Size Problem

Input:

- truth table of a partial Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$

1	$*$	$*$	1	$*$	1	1	0	\ldots	1

Truth table of f of length $N=2^{n}$

- size parameter s

Output:

yes, if exists a total function g that is consistent with f and can be computed by a circuit of size at most s

