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Minimum Circuit Size Problem

[nput: 1lolo0l1]0l1l1 0], 1

* truth table of a Boolean function £:{0, 1} = 10,1} 1, taple of f of length N = 27

* size parameter s

Output: @

yes, if f can be computed by a circuit of size at most s @ @
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Hardness of MCSP

* MCSP1sin NP

Guess a circuit and check, whether it computes f or not

* MCSP € P = no strong PRGs [Razborov, Rudich, 1994]

* MCSP 1s NP-complete = EXP # ZPP [Murray, Williams, 2015]

* Complexity of MCSP 1n restricted classes 1s important too:
If MCSP cannot be computed by
e a branching program of size N %1
* formula of size N3-%1

e circuit of size N1-01
Then NP ¢ C-SIZE[n*] for all k [Chen, Jin, Williams, 2019]
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MCSP 1s hard 1n certain computational models

In multiple computational models MCSP was shown to be hard

1
e ACOMCSP)= 29049 [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

0.49
e AC%[mod p](MCSP)= 2920 4 ) [Golovnev, Ilango, Impagliazzo, Kabanets,
Kolokolova, Tal, 2019]

¢ 1-coNBP(MCSP)= 2%) [Cheraghchi, Hirahara, Myrisiotis, Yoshida, 2019]
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Branching program
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d . b=1

* BP 1s a way to represent Boolean function: c=1
e directed graph without cycles b

* Oone source
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Complexity class with logarithmic space

ﬂﬂﬂ&ﬂ----- “

|/

T read-only 7

DR odlogtny)

* BP(f)=poly & f isin L/poly

BP(f) is a BP complexity of f

poly(n)
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Complexity class with logarithmic space

ﬂﬂﬂéﬂ----- " poly(n)
T read-only 7
IR ottogin)
° BP( f ):pOly — f 1S in L/pOly BP(f) is a BP complexity of f

* NBP corresponds to NL/poly

29
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Best lower bounds for branching programs

n

1 . . . .
e Atleasta 1l — o fraction of functions require BP size ™

le

e The best lower bound: BP(ED)ZQ( ) [Nechiporuk, 1966]

log?n

e Recent results:
« BP(MCSP)=Q(N?) [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
» Barrier on proving better than Q(N?) for MCSP [Chen, Jin, Williams, 2019]
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Known lower bounds for 1-NBPs

« 1-NBP(CLIQUE ONLY) = 22(V®) [Borodin, Razborov, Smolensky, 1993]

* 1-NBP(®,)= 2% [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
* @D, parity of triangles in a graph

¢ 1-NBP(coMCSP) = 2*™) [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

MCSP naturally a nondeterministic
problem, so it is harder to prove
a lower bound against NBP
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Main result
This result 1s tight for MCSP
with linear size parameter

S

-

Theorem: size of 1-NBP computing MCSP is N(oglog N

[Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time N (oglogN)

In MCSP* input is
a truth table of
a partial function

Exp-time
reduction

Independent Set —

(n x n)-Bipartite

Problem Computable
by 1-BP

Have the same

ETH-hard

1-NBP complexity

Unconditionally
hard for 1-NBP
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(n x n)-Bipartite Permutation Independent Set (BPIS)

n n
TO000 0000 * Graph with 2n x 2n vertices,
n - 00000000 * Edges exist only between vertices from
OO0 0000 two quadrants
- 00000000 * Need to find exactly one vertex from
OO0 OO0 every row, and exactly one vertex from
1 OO0 OO0 every column, such that
OO OO OO OO * These vertices are from the two quadrants
OO0 O000 * These vertices form independent set
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n n
100000000 * Graph with 2n x 2n vertices,
n - 0000000 * Edges exist only between vertices from
OO0O0O00O000O two quadrants
- 00000000 * Need to find exactly one vertex from
OO0OO00O00O000O every row, and exactly one vertex from
1 OO00O00I00O00O0O every column, such that
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(n x n)-Bipartite Permutation Independent Set (BPIS)

* Graph with 2n x 2n vertices,

* Edges exist only between vertices from
two quadrants

OOO0OO(
0000
0000
OOO0OO|

* Need to find exactly one vertex from
every row, and exactly one vertex from
every column, such that

* These vertices are from the two quadrants

0000
0000
0000
0000

* These vertices form independent set
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(n x n)-Bipartite Permutation Independent Set (BPIS)

n n
A A

* Graph with 2n x 2n vertices,

* Edges exist only between vertices from

O

O

OO two quadrants
O

* Need to find exactly one vertex from
every row, and exactly one vertex from
every column, such that

* These vertices are from the two quadrants

OOO0OO(
OO

OO0
0000

* These vertices form independent set

O
OO0
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* Graph with 2n x 2n vertices,

* Edges exist only between vertices from
two quadrants

* Need to find exactly one vertex from
every row, and exactly one vertex from
every column, such that

* These vertices are from the two quadrants

* These vertices form independent set
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(n x n)-BPIS 1s hard for 1-NBP

Lemma: size of 1-NBP computing an (n x n)-BPIS is 2(n logn)

Idea of the proof:

* Show that the minimum 1-NBP for Bipartite Permutation Independent Set
has the same size as the minimum 1-NBP for Bipartite Permutation Clique

* Adapt the proof of the lower bound on 1-NBP for CLIQUE ONLY to get a
lower bound on BPC



Progress so far

Unconditionally
hard for 1-NBP

(n x n)-Bipartite

Independent Set
Problem

>

Computable
by 1-BP

Have the same
1-NBP complexity
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1-NBP for MCSP* can be transtormed
to l-NBP for BPIS

Viepen) (¥i A 2i)

v(x,y,z) = X

\

ViE[Zn] Zi

ViE[Zn] (:l"z \4 yl)

0

OR:(@ 0wy @)

ORn(In+1, e

i

*

*9 3327:,)

; f p=0*"

,if ¢ =127

¢ Bg=12

o ER=0m

, if z=1"0" and y = 0"

, if z=0"1" and y = 0°"

,if 3 ((4, k), (7', k') € E such that (z,y, z) = (€xer, 0", eje;/)

, otherwise
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Viepen) (¥i A 2i)

y(x,y,2) = 9

Vi€[2n] Zi

Viepan) (i V %i)

0

ORn(Ila oo $xn)

; f p=0*"

,if ¢ =127
T
, if z=0°%"

, if z=1"0" and y = 0"

Only these bits of the
truth table depend
on the input bits of BPIS

OR.(Tny1,---,%2n) , if z=0"1" and y = 0*"
1 ,if 3 ((4, k), (7', k') € E such that (z,y, z) = (€xer, 0", eje;/)
x , otherwise
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1-NBP for MCSP* can be transtormed
to 1-NBP for BPIS

Vze[m](yz A 2;) ; if p=02"

\/ZG[M] Z; , ifxz =1%"

Vie(an) (%i V 3:) j 1= lrzn Only these bits of the
v(x,y,2) = | 0 ’ ff % =0 ) truth table depend

ORn(z1,...,2n)  , if 2=1"0" and y = 0™ on the input bits of BPIS

ORw(Znst, .. T2n) , if z = 0"1" and y = 02"

1 ,if 3 ((4, k), (7', k') € E such that (z,y, z) = (€xer, 0", eje;/)

- , otherwise

1-NBP for MCSP*
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1-NBP for MCSP* can be transtormed
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Vze[m](y, A 2;) ; if =020
\/Ze[m] Z; , ifxz =1%"
y : : — 12n
Viefan) (%i V i) ’ ff A 12 Only these bits of the
v(x,y,2) = | 0 | = truth table depend
» ) : nan 2n . .
OR.(Z1,. -, Zn) ,ifz=1"0"and y =0 on the input bits of BPIS
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1-NBP for MCSP* can be transtormed
to l-NBP for BPIS

Only these bits of the
truth table depend
on the input bits of BPIS

Viepen) (¥i A 2i) , if z =0%"
Viegn) %i ; fg=1"
Viean) (@i V ¥i) ¢ ifiz =A28
0 , if z=0%"
vny,z) = OR:(@ 0wy @) , if z=1"0" and y = 0*"
ORw(Znst, .. T2n) , if z = 0"1" and y = 02"
1 ,if 3 ((4, k), (7', k') € E such that (z,y, z) = (€xer, 0", eje;/)
- , otherwise

1-NBP for MCSP*

»
»

Substitute bits of the truth
table of ¥y that do not
depend on BPIS input

Substitute 1-BPs that
computes dependency
on the edges of BPIS

»
»
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Almost finished

Unconditionally
hard for 1-NBP

(n x n)-Bipartite

Independent Set
Problem

Have the same
1-NBP complexity
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MCSP* and MCSP have the same 1-NBP
complexity

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the

O O

minimal 1-NBP computing MCSP
1-NBP for MCSP* 0 k1 - ﬁ 1-NBP for MCSP
> *

1-NBP for MICSP & 1-NBP for MCSP*
0 1
O O\



Putting all together

(n x n)-Bipartite

Independent Set
Problem

Have the same
1-NBP complexity

Unconditionally
hard for 1-NBP

If MCSP could be computed by a small 1-NBP,
then (n x n)-BPIS could be computed by a 1-NBP
of even smaller size.

That leads to a contradiction.
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Upper bound

Simple guess
and check strategy

Lemma: MCSP on an input of length 2™ with a size parameter s can be computed by
a 1-NBP of size 27120(s 10gs)

Corollary: our 22 198™) |ower bound is tight for inputs with a linear size parameter
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function with higher than linear circuit complexity



Open questions

* Show tight lower bound for MCSP with higher size parameters

* The same technique cannot work, as we cannot construct a truth table of a
function with higher than linear circuit complexity

* Extend this result to other models of computations

* For any model in which (n x n)-BPIS 1s hard and the reduction to the truth
table 1s efficiently computable the same size lower bound will hold
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Partial Minimum Circuit Size Problem

Input:

* truth table of a partial Boolean function
f:10,1}" = {0,1,%}
* size parameter s

Truth table of f of length N = 2"

Output: @ @

yes, 1f exists a total function g that is consistent with f
and can be computed by a circuit of size at most s @ @




