## MCSP is Hard for Read-Once Nondeterministic Branching Programs

Ludmila Glinskih

Artur Riazanov

**Boston University** 

EPFL

LATIN 2022 Guanajuato, Mexico, November 8

#### Outline

- Minimum Circuit Size Problem
- Branching Programs
- Our result: every 1-NBP computing MCSP has superpolynomial size
- Technique

#### Minimum Circuit Size Problem

Input:

• truth table of a Boolean function  $f: \{0, 1\}^n \rightarrow \{0, 1\}$ 



Truth table of *f* of length  $N = 2^n$ 

## Minimum Circuit Size Problem

Input:

- truth table of a Boolean function  $f: \{0, 1\}^n \to \{0, 1\}$
- 1 0 0 1 0 1 1 0 ... 1

Truth table of f of length  $N = 2^n$ 

• size parameter *s* 

## Minimum Circuit Size Problem

#### Input:

- truth table of a Boolean function  $f: \{0, 1\}^n \to \{0, 1\}$
- size parameter *s*

#### **Output:**

yes, if f can be computed by a circuit of size at most s

#### 1 0 0 1 0 1 1 0 ... 1

Truth table of f of length  $N = 2^n$ 



• MCSP is in *NP* 

Guess a circuit and check, whether it computes f or not

• MCSP is in *NP* 

Guess a circuit and check, whether it computes f or not

• MCSP  $\in P \Rightarrow$  no strong PRGs [Razborov, Rudich, 1994]

• MCSP is in *NP* 

Guess a circuit and check, whether it computes f or not

- MCSP  $\in P \Rightarrow$  no strong PRGs [Razborov, Rudich, 1994]
- MCSP is *NP*-complete  $\Rightarrow EXP \neq ZPP$  [Murray, Williams, 2015]

• MCSP is in *NP* 

Guess a circuit and check, whether it computes f or not

- MCSP  $\in P \Rightarrow$  no strong PRGs [Razborov, Rudich, 1994]
- MCSP is NP-complete  $\Rightarrow EXP \neq ZPP$  [Murray, Williams, 2015]
- Complexity of MCSP in restricted classes is important too: If MCSP cannot be computed by
  - a branching program of size N<sup>2.01</sup>
    formula of size N<sup>3.01</sup>

  - circuit of size  $N^{1.01}$

Then NP  $\not\subset$  C-SIZE[ $n^k$ ] for all k [Chen, Jin, Williams, 2019]

In multiple computational models MCSP was shown to be hard

In multiple computational models MCSP was shown to be hard

• 
$$AC^{0}(MCSP) = 2^{\Omega(N^{\frac{1}{d}})}$$
 [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

In multiple computational models MCSP was shown to be hard

• 
$$AC^{0}(MCSP) = 2^{\Omega(N^{\frac{1}{d}})}$$
 [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

•  $AC^{0} [mod p](MCSP) = 2^{\Omega(N^{\frac{0.49}{d}})}$  [Golovnev, Ilango, Impagliazzo, Kabanets, Kolokolova, Tal, 2019]

In multiple computational models MCSP was shown to be hard

• 
$$AC^{0}(MCSP) = 2^{\Omega(N^{\frac{1}{d}})}$$
 [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

- $AC^{0}$ [mod p](MCSP)=  $2^{\Omega(N^{\frac{0.49}{d}})}$  [Golovnev, Ilango, Impagliazzo, Kabanets, Kolokolova, Tal, 2019]
- 1-coNBP(MCSP)=  $2^{\Omega(N)}$  [Cheraghchi, Hirahara, Myrisiotis, Yoshida, 2019]

- BP is a way to represent Boolean function:
  - directed graph without cycles
  - one source
  - two sinks: labeled with 0 and 1
  - all other vertices labeled with variables
  - values of variables on edges
- Size of a BP is a number of vertices



- BP is a way to represent Boolean function:
  - directed graph without cycles
  - one source
  - two sinks: labeled with 0 and 1
  - all other vertices labeled with variables
  - values of variables on edges
- Size of a BP is a number of vertices



- BP is a way to represent Boolean function:
  - directed graph without cycles
  - one source
  - two sinks: labeled with 0 and 1
  - all other vertices labeled with variables
  - values of variables on edges
- Size of a BP is a number of vertices



- BP is a way to represent Boolean function:
  - directed graph without cycles
  - one source
  - two sinks: labeled with 0 and 1
  - all other vertices labeled with variables
  - values of variables on edges
- Size of a BP is a number of vertices



- BP is a way to represent Boolean function:
  - directed graph without cycles
  - one source
  - two sinks: labeled with 0 and 1
  - all other vertices labeled with variables
  - values of variables on edges
- Size of a BP is a number of vertices



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



# Complexity class with logarithmic space



• BP(f)=poly  $\Leftrightarrow$  f is in L/poly

# Complexity class with logarithmic space



• BP(f)=poly  $\Leftrightarrow$  f is in L/poly

BP(f) is a BP complexity of f

# Complexity class with logarithmic space



• BP(f)=poly  $\Leftrightarrow$  f is in L/poly

BP(f) is a BP complexity of f

• NBP corresponds to NL/poly

#### Best lower bounds for branching programs

• At least a  $1 - \frac{1}{2^n}$  fraction of functions require BP size  $\frac{2^n}{4n}$ 

#### Best lower bounds for branching programs

• At least a  $1 - \frac{1}{2^n}$  fraction of functions require BP size  $\frac{2^n}{4n}$ 

• The best lower bound: BP(ED)= $\Omega\left(\frac{n^2}{\log^2 n}\right)$  [Nechiporuk, 1966]

#### Best lower bounds for branching programs

• At least a 
$$1 - \frac{1}{2^n}$$
 fraction of functions require BP size  $\frac{2^n}{4n}$ 

• The best lower bound: BP(ED)=
$$\Omega\left(\frac{n^2}{\log^2 n}\right)$$
 [Nechiporuk, 1966]

- Recent results:
  - BP(MCSP)= $\tilde{\Omega}(N^2)$  [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
  - Barrier on proving better than  $\tilde{\Omega}(N^2)$  for MCSP [Chen, Jin, Williams, 2019]

# Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time



# Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time



#### Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE\_ONLY) =  $2^{\Omega(\sqrt{n})}$  [Borodin, Razborov, Smolensky, 1993]

#### Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE\_ONLY) =  $2^{\Omega(\sqrt{n})}$  [Borodin, Razborov, Smolensky, 1993]

- 1-NBP( $\bigoplus_{\Delta}$ )= 2<sup> $\Omega(n)$ </sup> [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
  - $\bigoplus_{\Delta}$  parity of triangles in a graph

#### Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE\_ONLY) =  $2^{\Omega(\sqrt{n})}$  [Borodin, Razborov, Smolensky, 1993]

- 1-NBP(⊕<sub>Δ</sub>)= 2<sup>Ω(n)</sup> [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
  ⊕<sub>Δ</sub> parity of triangles in a graph
- 1-NBP(coMCSP) =  $2^{\Omega(N)}$  [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

#### Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE\_ONLY) =  $2^{\Omega(\sqrt{n})}$  [Borodin, Razborov, Smolensky, 1993]

- 1-NBP(⊕<sub>Δ</sub>)= 2<sup>Ω(n)</sup> [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
  ⊕<sub>Δ</sub> parity of triangles in a graph
- 1-NBP(coMCSP) =  $2^{\Omega(N)}$  [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

MCSP naturally a nondeterministic problem, so it is harder to prove a lower bound against NBP

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 

This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 

This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 

This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 

**Theorem [Ilango'20]:** assuming Exponential Time Hypothesis every Turing machine computing MCSP\* requires time  $N^{\Omega(\log \log N)}$ 

(n x n)-Bipartite Independent Set Problem

This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 



This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 



This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 



This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 



This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 



This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 



This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 





- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
  - These vertices are from the two quadrants
  - These vertices form independent set



- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
  - These vertices are from the two quadrants
  - These vertices form independent set



- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
  - These vertices are from the two quadrants
  - These vertices form independent set



- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
  - These vertices are from the two quadrants
  - These vertices form independent set



- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
  - These vertices are from the two quadrants
  - These vertices form independent set

#### (n x n)-BPIS is hard for 1-NBP

**Lemma:** size of 1-NBP computing an (n x n)-BPIS is  $2^{\Omega(n \log n)}$ 

### (n x n)-BPIS is hard for 1-NBP

**Lemma:** size of 1-NBP computing an (n x n)-BPIS is  $2^{\Omega(n \log n)}$ 

#### Idea of the proof:

• Show that the minimum 1-NBP for Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for Bipartite Permutation Clique

### (n x n)-BPIS is hard for 1-NBP

**Lemma:** size of 1-NBP computing an (n x n)-BPIS is  $2^{\Omega(n \log n)}$ 

#### Idea of the proof:

- Show that the minimum 1-NBP for Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for Bipartite Permutation Clique
- Adapt the proof of the lower bound on 1-NBP for CLIQUE\_ONLY to get a lower bound on BPC





$$\gamma(x, y, z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ 0 R_n(x_1, \dots, x_n) &, \text{ if } z = 1^n 0^n \text{ and } y = 0^{2n} \\ 0 R_n(x_{n+1}, \dots, x_{2n}) &, \text{ if } z = 0^n 1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists ((j, k), (j', k')) \in E \text{ such that } (x, y, z) = (\overline{e_k e_{k'}}, 0^{2n}, e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}$$

1

$$\gamma(x, y, z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ OR_n(x_1, \dots, x_n) &, \text{ if } z = 1^n 0^n \text{ and } y = 0^{2n} \\ OR_n(x_{n+1}, \dots, x_{2n}) &, \text{ if } z = 0^n 1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists ((j, k), (j', k')) \in E \text{ such that } (x, y, z) = (\overline{e_k e_{k'}}, 0^{2n}, e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}$$

$$\gamma(x, y, z) = \begin{cases} \bigvee_{i \in [2n]} (y_i \wedge z_i) &, \text{ if } x = 0^{2n} \\ \bigvee_{i \in [2n]} z_i &, \text{ if } x = 1^{2n} \\ \bigvee_{i \in [2n]} (x_i \vee y_i) &, \text{ if } z = 1^{2n} \\ 0 &, \text{ if } z = 0^{2n} \\ 0 R_n(x_1, \dots, x_n) &, \text{ if } z = 1^{n} 0^n \text{ and } y = 0^{2n} \\ O R_n(x_{n+1}, \dots, x_{2n}) &, \text{ if } z = 0^n 1^n \text{ and } y = 0^{2n} \\ 0 R_n(x_{n+1}, \dots, x_{2n}) &, \text{ if } z = 0^n 1^n \text{ and } y = 0^{2n} \\ 1 &, \text{ if } \exists ((j, k), (j', k')) \in E \text{ such that } (x, y, z) = (\overline{e_k e_{k'}}, 0^{2n}, e_j e_{j'}) \\ \star &, \text{ otherwise} \end{cases}$$









#### Almost finished



**Lemma:** the size of the minimal 1-NBP computing MCSP\* equals the size of the minimal 1–NBP computing MCSP

**Lemma:** the size of the minimal 1-NBP computing MCSP\* equals the size of the minimal 1–NBP computing MCSP

1-NBP for MCSP\*



**Lemma:** the size of the minimal 1-NBP computing MCSP\* equals the size of the minimal 1–NBP computing MCSP

1-NBP for MCSP\*



**Lemma:** the size of the minimal 1-NBP computing MCSP\* equals the size of the minimal 1–NBP computing MCSP



**Lemma:** the size of the minimal 1-NBP computing MCSP\* equals the size of the minimal 1–NBP computing MCSP



#### Putting all together



## Upper bound

**Lemma:** MCSP on an input of length  $2^n$  with a size parameter *s* can be computed by a 1-NBP of size  $2^n 2^{O(s \log s)}$ 

## Upper bound

Simple guess and check strategy

**Lemma:** MCSP on an input of length  $2^n$  with a size parameter *s* can be computed by a 1-NBP of size  $2^n 2^{O(s \log s)}$ 

## Upper bound

Simple guess and check strategy

Lemma: MCSP on an input of length  $2^n$  with a size parameter *s* can be computed by a 1-NBP of size  $2^n 2^{O(s \log s)}$ 

**Corollary:** our  $2^{\Omega(n \log n)}$  lower bound is tight for inputs with a linear size parameter

## Open questions

- Show tight lower bound for MCSP with higher size parameters
  - The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity

## Open questions

- Show tight lower bound for MCSP with higher size parameters
  - The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity
- Extend this result to other models of computations
  - For any model in which (n x n)-BPIS is hard and the reduction to the truth table is efficiently computable the same size lower bound will hold

### Partial Minimum Circuit Size Problem

#### Input:

- truth table of a partial Boolean function  $f: \{0, 1\}^n \rightarrow \{0, 1, *\}$
- size parameter *s*

#### **Output:**

yes, if exists a total function g that is consistent with f and can be computed by a circuit of size at most s

#### 1 \* \* 1 \* 1 0 ... 1

Truth table of f of length  $N = 2^n$ 

