
MCSP is Hard
for Read-Once Nondeterministic

Branching Programs

Ludmila Glinskih Artur Riazanov
Boston University EPFL

1

LATIN 2022
Guanajuato, Mexico, November 8

Outline

• Minimum Circuit Size Problem
• Branching Programs
• Our result: every 1-NBP computing MCSP has superpolynomial size
• Technique

2

Minimum Circuit Size Problem

3

Input:
• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!

Minimum Circuit Size Problem

4

Input:
• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1
• size parameter 𝑠

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!

Minimum Circuit Size Problem

5

Input:
• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1
• size parameter 𝑠

Output:
yes, if 𝑓 can be computed by a circuit of size at most 𝑠

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!

⋁

⋁

∧

∧

∧

⋁ ⋁

𝑥" 𝑥# 𝑥!…𝑥$

Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

6

Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

• MCSP ∈ 𝑃 ⇒ no strong PRGs [Razborov, Rudich, 1994]

7

Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

• MCSP ∈ 𝑃 ⇒ no strong PRGs [Razborov, Rudich, 1994]

• MCSP is 𝑁𝑃-complete ⇒ 𝐸𝑋𝑃 ≠ 𝑍𝑃𝑃 [Murray, Williams, 2015]

8

Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

• MCSP ∈ 𝑃 ⇒ no strong PRGs [Razborov, Rudich, 1994]

• MCSP is 𝑁𝑃-complete ⇒ 𝐸𝑋𝑃 ≠ 𝑍𝑃𝑃 [Murray, Williams, 2015]

• Complexity of MCSP in restricted classes is important too:
If MCSP cannot be computed by

• a branching program of size 𝑁!.#$

• formula of size 𝑁%.#$

• circuit of size 𝑁$.#$

Then NP ⊄ C-SIZE[𝑛&] for all 𝑘 [Chen, Jin, Williams, 2019]

9

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

10

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

• 𝐴𝐶)(MCSP)= 2*(,
!
") [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

11

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

• 𝐴𝐶)(MCSP)= 2*(,
!
") [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

• 𝐴𝐶)[mod p](MCSP)= 2*(,
#.%&
") [Golovnev, Ilango, Impagliazzo, Kabanets,

Kolokolova, Tal, 2019]

12

MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

• 𝐴𝐶)(MCSP)= 2*(,
!
") [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

• 𝐴𝐶)[mod p](MCSP)= 2*(,
#.%&
") [Golovnev, Ilango, Impagliazzo, Kabanets,

Kolokolova, Tal, 2019]

• 1-coNBP(MCSP)= 2*(,) [Cheraghchi, Hirahara, Myrisiotis, Yoshida, 2019]

13

Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices

a

b

c

01

1

0

1

1

0

0

14

Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices

a

b

c

01

1

0

1

1

0

0

a = 0
b = 1
c = 1

15

Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices

a

b

c

01

1

0

1

1

0

0

a = 0
b = 1
c = 1

16

Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices

a

b

c

01

1

0

1

1

0

0

a = 0
b = 1
c = 1

17

Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices

a

b

c

01

1

0

1

1

0

0

a = 0
b = 1
c = 1

18

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

0
0

19

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

20

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

21

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

22

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

23

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

24

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

25

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

26

Complexity class with logarithmic space

• BP(𝑓)=poly ⇔ 𝑓 is in L/poly

a d v i c ei n p u t

0 1 1

27

read-only

n poly(n)

O(log(n))

Complexity class with logarithmic space

• BP(𝑓)=poly ⇔ 𝑓 is in L/poly

a d v i c ei n p u t

0 1 1

28

read-only

n poly(n)

O(log(n))

BP(f) is a BP complexity of f

Complexity class with logarithmic space

• BP(𝑓)=poly ⇔ 𝑓 is in L/poly

• NBP corresponds to NL/poly

a d v i c ei n p u t

0 1 1

29

read-only

n poly(n)

O(log(n))

BP(f) is a BP complexity of f

Best lower bounds for branching programs

• At least a 1 − .
/'

fraction of functions require BP size /
'

0!

30

Best lower bounds for branching programs

• At least a 1 − .
/'

fraction of functions require BP size /
'

0!

• The best lower bound: BP(ED)=Ω !(

123(! [Nechiporuk, 1966]

31

Best lower bounds for branching programs

• At least a 1 − .
/'

fraction of functions require BP size /
'

0!

• The best lower bound: BP(ED)=Ω !(

123(! [Nechiporuk, 1966]

• Recent results:
• BP(MCSP)=&Ω 𝑁! [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
• Barrier on proving better than &Ω 𝑁! for MCSP [Chen, Jin, Williams, 2019]

32

c

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no
more than 1 time

a

b

01

1

0

1

1

0

0

33

a

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no
more than 1 time

a

b

01

1

0

1

1

0

0

34

Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2* ! [Borodin, Razborov, Smolensky, 1993]

35

Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2* ! [Borodin, Razborov, Smolensky, 1993]

• 1-NBP(⨁∆)= 2*(!) [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
• ⨁∆ parity of triangles in a graph

36

Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2* ! [Borodin, Razborov, Smolensky, 1993]

• 1-NBP(⨁∆)= 2*(!) [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
• ⨁∆ parity of triangles in a graph

• 1-NBP(coMCSP) = 2*(,) [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

37

Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2* ! [Borodin, Razborov, Smolensky, 1993]

• 1-NBP(⨁∆)= 2*(!) [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
• ⨁∆ parity of triangles in a graph

• 1-NBP(coMCSP) = 2*(,) [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

38

MCSP naturally a nondeterministic
problem, so it is harder to prove

a lower bound against NBP

Main result

39

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Main result

40

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

This result is tight for MCSP
with linear size parameter

Main result

41

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

This result is tight for MCSP
with linear size parameter

Main result

42

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

This result is tight for MCSP
with linear size parameter

Main result

43

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

This result is tight for MCSP
with linear size parameter

Main result

44

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

MCSP*

This result is tight for MCSP
with linear size parameter

Main result

45

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

MCSP*

This result is tight for MCSP
with linear size parameter

In MCSP* input is
a truth table of

a partial function

Main result

46

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

MCSP*

Exp-time
reduction

This result is tight for MCSP
with linear size parameter

In MCSP* input is
a truth table of

a partial function

Main result

47

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

MCSP*

Exp-time
reduction

Unconditionally
hard for 1-NBP

This result is tight for MCSP
with linear size parameter

In MCSP* input is
a truth table of

a partial function

Main result

48

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

MCSP*

Exp-time
reduction

Unconditionally
hard for 1-NBP

Computable
by 1-BP

This result is tight for MCSP
with linear size parameter

In MCSP* input is
a truth table of

a partial function

Main result

49

Theorem: size of 1-NBP computing MCSP is 𝑁*(123123 ,)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁*(123123 ,)

(n x n)-Bipartite
Independent Set

Problem

ETH-hard

MCSP*

Exp-time
reduction

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

This result is tight for MCSP
with linear size parameter

In MCSP* input is
a truth table of

a partial function

(n x n)-Bipartite Permutation Independent Set (BPIS)

50

n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from

two quadrants
• Need to find exactly one vertex from

every row, and exactly one vertex from
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set

51

n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from

two quadrants
• Need to find exactly one vertex from

every row, and exactly one vertex from
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set

(n x n)-Bipartite Permutation Independent Set (BPIS)

52

n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from

two quadrants
• Need to find exactly one vertex from

every row, and exactly one vertex from
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set

(n x n)-Bipartite Permutation Independent Set (BPIS)

53

n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from

two quadrants
• Need to find exactly one vertex from

every row, and exactly one vertex from
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set

(n x n)-Bipartite Permutation Independent Set (BPIS)

54

n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from

two quadrants
• Need to find exactly one vertex from

every row, and exactly one vertex from
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set

(n x n)-Bipartite Permutation Independent Set (BPIS)

(n x n)-BPIS is hard for 1-NBP

55

Lemma: size of 1-NBP computing an (n x n)-BPIS is 2*(! 123 !)

(n x n)-BPIS is hard for 1-NBP

Idea of the proof:
• Show that the minimum 1-NBP for Bipartite Permutation Independent Set

has the same size as the minimum 1-NBP for Bipartite Permutation Clique

56

Lemma: size of 1-NBP computing an (n x n)-BPIS is 2*(! 123 !)

(n x n)-BPIS is hard for 1-NBP

Idea of the proof:
• Show that the minimum 1-NBP for Bipartite Permutation Independent Set

has the same size as the minimum 1-NBP for Bipartite Permutation Clique
• Adapt the proof of the lower bound on 1-NBP for CLIQUE_ONLY to get a

lower bound on BPC

57

Lemma: size of 1-NBP computing an (n x n)-BPIS is 2*(! 123 !)

Progress so far

58

(n x n)-Bipartite
Independent Set

Problem
MCSP*

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

59

𝛾 𝑥, 𝑦, 𝑧 =

1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

60

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the

truth table depend
on the input bits of BPIS

1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

61

1-NBP for MCSP*

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the

truth table depend
on the input bits of BPIS

1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

62

1-NBP for MCSP*

Substitute bits of the truth
table of 𝛾 that do not
depend on BPIS’ input

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the

truth table depend
on the input bits of BPIS

1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

63

1-NBP for MCSP*

Substitute bits of the truth
table of 𝛾 that do not
depend on BPIS’ input

Substitute 1-BPs that
computes dependency

on the edges of BPIS

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the

truth table depend
on the input bits of BPIS

Almost finished

64

(n x n)-Bipartite
Independent Set

Problem
MCSP*

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

MCSP* and MCSP have the same 1-NBP
complexity

65

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the
minimal 1–NBP computing MCSP

MCSP* and MCSP have the same 1-NBP
complexity

66

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 *

t

MCSP* and MCSP have the same 1-NBP
complexity

67

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 * 1-NBP for MCSP10

t t

MCSP* and MCSP have the same 1-NBP
complexity

68

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 * 1-NBP for MCSP10

t t

1-NBP for MCSP 10
t

MCSP* and MCSP have the same 1-NBP
complexity

69

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 * 1-NBP for MCSP10

t t

1-NBP for MCSP 10
t

1-NBP for MCSP*
10 *

t

Putting all together

70

(n x n)-Bipartite
Independent Set

Problem
MCSP*

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

If MCSP could be computed by a small 1-NBP,
then (n x n)-BPIS could be computed by a 1-NBP

of even smaller size.
That leads to a contradiction.

Upper bound

71

Lemma: MCSP on an input of length 2! with a size parameter 𝑠 can be computed by
a 1-NBP of size 2!29(: 123 :)

Upper bound

72

Lemma: MCSP on an input of length 2! with a size parameter 𝑠 can be computed by
a 1-NBP of size 2!29(: 123 :)

Simple guess
and check strategy

Upper bound

73

Corollary: our 2*(! 123 !) lower bound is tight for inputs with a linear size parameter

Simple guess
and check strategy

Lemma: MCSP on an input of length 2! with a size parameter 𝑠 can be computed by
a 1-NBP of size 2!29(: 123 :)

Open questions

• Show tight lower bound for MCSP with higher size parameters
• The same technique cannot work, as we cannot construct a truth table of a

function with higher than linear circuit complexity

74

Open questions

• Show tight lower bound for MCSP with higher size parameters
• The same technique cannot work, as we cannot construct a truth table of a

function with higher than linear circuit complexity

• Extend this result to other models of computations
• For any model in which (n x n)-BPIS is hard and the reduction to the truth

table is efficiently computable the same size lower bound will hold

75

76

Partial Minimum Circuit Size Problem

77

Input:
• truth table of a partial Boolean function

𝑓: 0, 1 ! → 0, 1,∗
• size parameter 𝑠

Output:
yes, if exists a total function 𝑔 that is consistent with 𝑓
and can be computed by a circuit of size at most 𝑠

1 * * 1 * 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!

⋁

⋁

∧

∧

∧

⋁ ⋁

𝑥" 𝑥# 𝑥!…𝑥$

