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Outline

• Minimum Circuit Size Problem
• Branching Programs
• Our result: every 1-NBP computing MCSP has superpolynomial size
• Technique
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Minimum Circuit Size Problem
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Input:
• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!
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Minimum Circuit Size Problem

5

Input:
• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1
• size parameter 𝑠

Output:
yes, if 𝑓 can be computed by a circuit of size at most 𝑠

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!

⋁

⋁

∧

∧

∧

⋁ ⋁

𝑥" 𝑥# 𝑥!…𝑥$



Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not
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Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

• MCSP ∈ 𝑃 ⇒ no strong PRGs [Razborov, Rudich, 1994]

• MCSP is 𝑁𝑃-complete ⇒ 𝐸𝑋𝑃 ≠ 𝑍𝑃𝑃 [Murray, Williams, 2015]

• Complexity of MCSP in restricted classes is important too:
If MCSP cannot be computed by

• a branching program of size 𝑁!.#$

• formula of size 𝑁%.#$

• circuit of size 𝑁$.#$

Then NP ⊄ C-SIZE[𝑛&] for all 𝑘 [Chen, Jin, Williams, 2019]
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MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard
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MCSP is hard in certain computational models

In multiple computational models MCSP was shown to be hard

• 𝐴𝐶)(MCSP)= 2*(,
!
") [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

• 𝐴𝐶)[mod p](MCSP)= 2*(,
#.%&
" ) [Golovnev, Ilango, Impagliazzo, Kabanets, 

Kolokolova, Tal, 2019]

• 1-coNBP(MCSP)= 2*(,) [Cheraghchi, Hirahara, Myrisiotis, Yoshida, 2019]
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Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices 

a

b

c

01

1

0

1

1

0

0
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Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink
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Complexity class with logarithmic space

• BP(𝑓)=poly ⇔ 𝑓 is in L/poly 

a d v i c ei n p u t

0 1 1
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Complexity class with logarithmic space

• BP(𝑓)=poly ⇔ 𝑓 is in L/poly 

• NBP corresponds to NL/poly

a d v i c ei n p u t

0 1 1

29

read-only

n poly(n)

O(log(n))

BP(f) is a BP complexity of f



Best lower bounds for branching programs

• At least a 1 − .
/'

fraction of functions require BP size /
'

0!
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Best lower bounds for branching programs

• At least a 1 − .
/'

fraction of functions require BP size /
'

0!

• The best lower bound: BP(ED)=Ω !(

123(! [Nechiporuk, 1966]

• Recent results: 
• BP(MCSP)=&Ω 𝑁! [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
• Barrier on proving better than &Ω 𝑁! for MCSP [Chen, Jin, Williams, 2019]
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c

Read-once branching programs

1-BP (1-NBP) if for every path every variable occurs no 
more than 1 time

a
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1

1

0

0
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Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2* ! [Borodin, Razborov, Smolensky, 1993]
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MCSP naturally a nondeterministic 
problem, so it is harder to prove

a lower bound against NBP
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(n x n)-Bipartite Permutation Independent Set (BPIS)
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n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from 

two quadrants
• Need to find exactly one vertex from 

every row, and exactly one vertex from 
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set
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56

Lemma: size of 1-NBP computing an (n x n)-BPIS is 2*(! 123 !)



(n x n)-BPIS is hard for 1-NBP

Idea of the proof:
• Show that the minimum 1-NBP for Bipartite Permutation Independent Set 

has the same size as the minimum 1-NBP for Bipartite Permutation Clique
• Adapt the proof of the lower bound on 1-NBP for CLIQUE_ONLY to get a 

lower bound on BPC
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Lemma: size of 1-NBP computing an (n x n)-BPIS is 2*(! 123 !)



Progress so far
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(n x n)-Bipartite 
Independent Set 

Problem
MCSP*

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MCSP

Have the same
1-NBP complexity



1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

59

𝛾 𝑥, 𝑦, 𝑧 =



1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

60

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the 

truth table depend
on the input bits of BPIS



1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

61

1-NBP for MCSP*

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the 

truth table depend
on the input bits of BPIS



1-NBP for MCSP* can be transformed
to 1-NBP for BPIS

62
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depend on BPIS’ input 
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Only these bits of the 

truth table depend
on the input bits of BPIS



1-NBP for MCSP* can be transformed
to 1-NBP for BPIS
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1-NBP for MCSP*

Substitute bits of the truth 
table of 𝛾 that do not 
depend on BPIS’ input 

Substitute 1-BPs that 
computes dependency 

on the edges of BPIS 

𝛾 𝑥, 𝑦, 𝑧 =
Only these bits of the 

truth table depend
on the input bits of BPIS



Almost finished
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Independent Set 
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Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the 
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 * 1-NBP for MCSP10

t t

1-NBP for MCSP 10
t
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Putting all together

70

(n x n)-Bipartite 
Independent Set 

Problem
MCSP*

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MCSP

Have the same
1-NBP complexity

If MCSP could be computed by a small 1-NBP,
then (n x n)-BPIS could be computed by a 1-NBP

of even smaller size.
That leads to a contradiction.
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Upper bound
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Corollary: our 2*(! 123 !) lower bound is tight for inputs with a linear size parameter

Simple guess
and check strategy

Lemma: MCSP on an input of length 2! with a size parameter 𝑠 can be computed by 
a 1-NBP of size 2!29(: 123 :)



Open questions

• Show tight lower bound for MCSP with higher size parameters
• The same technique cannot work, as we cannot construct a truth table of a 

function with higher than linear circuit complexity
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Open questions

• Show tight lower bound for MCSP with higher size parameters
• The same technique cannot work, as we cannot construct a truth table of a 

function with higher than linear circuit complexity

• Extend this result to other models of computations
• For any model in which (n x n)-BPIS is hard and the reduction to the truth 

table is efficiently computable the same size lower bound will hold
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Partial Minimum Circuit Size Problem
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Input:
• truth table of a partial Boolean function 

𝑓: 0, 1 ! → 0, 1,∗
• size parameter 𝑠

Output:
yes, if exists a total function 𝑔 that is consistent with 𝑓
and can be computed by a circuit of size at most 𝑠

1 * * 1 * 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!
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