
Circuits and Branching Programs
in Meta-Complexity

Ludmila Glinskih

1

Department of Computer Science
Boston University

April 5, 2024

Thesis committee:
Mark Bun

Sofya Raskhodnikova
Steven Homer

Marco Carmosino

Outline

• Importance of studying computational complexity
• Meta-complexity
• Connections between circuit and structural complexity
• Complexity of representing MCSP via 1-NBP
• Complexity of branching program minimization

2

Computational complexity

Studies how much computational resources are required for solving a
computational problem

Possible resources:
• Time
• Space
• Randomness
• Bits of communication
• ...

3

focus of my work

Computational models

4

𝑥! 𝑥" 𝑥# … 𝑥$

Turing machine

⋁

⋁

∧

∧

∧

⋁ ⋁

𝑥! 𝑥" 𝑥$…𝑥#

Boolean circuit

01

1

0

1 0

𝑥!

𝑥"

State: s1
Transitions: …

Branching program (BP)

one circuit/branching
program for each

input length => consider
a family of circuits/BPs

Known hardness results

• Almost all boolean functions require large circuits [Shannon’49]
• Method: counting argument
• The same result holds for branching programs and for time-complexity in the

Turing machine model

• The best lower bound for an explicit function
• Ω(𝑛)	for Boolean circuits [Find, Golovnev, Hirsch, Kulikov’15]
• &Ω 𝑛% for branching programs [Nechiporuk’66]
• &Ω(𝑛&.()	for Turing machines [Kalyanasundaram, Schnitger’92]

5

Meta-complexity

Studies complexity of functions which compute complexity of an input
function

6

M
description of

a Boolean function this function is easy

How easy is M?

Minimum Circuit Size Problem

7

Input:

• truth table of a Boolean function 𝑓: 0, 1) → 0, 1
• size parameter 𝑠

Output:

yes, if 𝑓 can be computed by a circuit of size at most 𝑠

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2$

⋁

⋁

∧

∧

∧

⋁ ⋁

𝑥! 𝑥" 𝑥$…𝑥#

Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

• MCSP ∈ 𝑃 ⇒ no strong PRGs [Razborov, Rudich, 1994]

• MCSP is 𝑁𝑃-complete ⇒ 𝐸𝑋𝑃 ≠ 𝑍𝑃𝑃 [Murray, Williams, 2015]

• Complexity of MCSP in restricted classes is important too:
If MCSP cannot be computed by

• branching program of size 𝑁!.#$

• or circuit of size 𝑁$.#$

Then NP ⊄ BP-SIZE[𝑛%] (or SIZE[𝑛%]) for all 𝑘 [Chen, Jin, Williams, 2019]

8

Goal of my dissertation

Understand connections between circuit and branching program
complexity of meta-complexity problems

Results I present:
I. New Karp-Lipton Theorems from RP circuit

lower bounds
II. MCSP is hard for read-once nondeterministic

branching programs
III. Partial minimum branching program size problem

is ETH-hard

9

[G, Riazanov’22]

[G, Riazanov’24]

[Bun, Carmosino, G]

Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program Size Problem is ETH hard

10

Original Karp-Lipton Theorem

Theorem [Karp–Lipton’80]:

 NP ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PH = Σ!

11

non-uniform uniform

Polynomial hierarchy collapses
to the second level

Every language in NP can be
computed by a poly-size circuit

Recent Karp-Lipton style result

Theorem [Impagliazzo, Kabanets, Volkovich’18]:

 PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP"#$%

Can we get stronger conditional collapses with a stronger complexity
assumptions?

12

PSPACE is bigger than PH
ZPP%&'(is smaller than Σ"

Stronger Karp-Lipton theorems from
additional assumptions

Theorem [Chen, McKay, Murray, Williams'19]:
 Suppose NP ⊄ SIZE[𝑛&] for all 𝑘.	Then for all 𝜖 > 0

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂'.) NP/𝑛*

Can we get a deeper collapse if we assume hardness of a complexity
class smaller than NP? For instance, RP?

13

It is not known whether
NP/𝑛) is smaller than ZPP%&'(

Our result

14

Theorem 1: Suppose RP ⊄ SIZE[𝑛&] for all 𝑘. Then there exists
𝑐 > 0 such that either

• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂'.) ZPP/𝑛+

• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂'.) SUBEXP"#$%

Proof ideas: what hardness of RP gives us

15

Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'([IKV’18]

MCSP oracle plays a role of a natural property =>
we need to extract a natural property from

the assumption RP	⊄	SIZE[𝑛*]

Natural property

16

An algorithm is called a natural property if

• It runs in polynomial time
• It outputs no on all easy functions
• It outputs yes on a significant fraction of functions

An efficient algorithm for MCSP can be converted to a natural property

usefulness

largeness

constructivity

RP-verifiers

17

𝑀(𝑥, 𝑟) is an RP-verifier for 𝐿 ∈ RP
• Runs in polynomial time
• Rejects all random seeds 𝑟 if 𝑥 is

not in the language
• Accepts at least half of random

seeds 𝑟 if 𝑥 is in the language

What if we fix an input 𝑥 ∈ 𝐿	 such that
every 𝑟 that 𝑀(𝑥, 𝑟) accepts, has large circuit

complexity?

Algorithm 𝐴(𝑇) is a natural property
• Runs in polynomial time
• Rejects all input truth tables 𝑇 with

a small circuit complexity
• Accepts a significant fraction of all

truth tables

Natural property from RP seeds hardness

18

Assume that exists a language 𝐿 in RP that does not have small seeds:
For every RP-verifier 𝑀 holds for infinitely many 𝑥 ∈ 𝐿 ∶

 𝑀 𝑥, 𝑟 = 1 implies that 𝑟 has a large circuit complexity

We get a natural property algorithm 𝐴 as follows:
• Fix an input 𝑥 such that 𝑀(𝑥, 𝑟) accepts the seed 𝑟 only if it is hard
• Set 𝐴(⋅) = 𝑀 𝑥,⋅ , then if 𝐴 𝑇 = 1 => 𝑇 is hard

Non-uniform choice of x is the
reason why we need an advice

Proof ideas: what hardness of RP gives us

19

Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'([IKV’18]

MCSP oracle plays a role of a natural property =>
we need to extract a natural property from

the assumption RP	⊄ SIZE[𝑛*]

But our current assumption: RP-seeds	⊄	SIZE[𝑛*]

Easy-seeds and Kolmogorov’s conjecture

20

We want to relate the circuit complexity of RP-seeds with the circuit
complexity of RP

Conjecture: Suppose PSPACE ⊂ P/𝑝𝑜𝑙𝑦 and there exists 𝑘 such that
all RP-seeds ⊂ SIZE[𝑛&]. Then RP ⊂ SIZE[𝑛,)-.(&)]

Kolmogorov’s Conjecture: P ⊂ SIZE[𝑛+] for some 𝑐

We do not know a nice RP-complete language, and we
do not know whether this conjecture is true

Easy-witness lemma for RP

21

𝑁𝑃 ⊂ 𝑃/𝑝𝑜𝑙𝑦, 𝑅𝑃 has easy seeds, 𝑃 ⊂ 𝑆𝐼𝑍𝐸[𝑛&]

We can construct a small circuit for every language 𝐿 in RP

To construct a fixed poly-size circuit for 𝐿 we use fixed poly-size
circuits for:
• Circuit-SAT problem
• Seed for yes-instances
• Circuit for an RP-verifier

𝑃𝑆𝑃𝐴𝐶𝐸 ⊂ 𝑃/𝑝𝑜𝑙𝑦 Kolmogorov’s conjecture

Without Kolmogorov’s conjecture we cannot have a
fixed bound on the circuit size for all RP verifiers

Proof ideas: what hardness of RP gives us

22

Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so
either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'([IKV’18]

Assuming hardness of RP and Kolmogorov’s
conjecture we get a natural property, which we use

instead of MCSP in [IKV’18] result

assuming Kolmogorov’s conj is true

Proof ideas: what hardness of RP gives us

23

Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'([IKV’18]

Assuming the Kolmogorov’s conjecture is false
we get a hard function in P, which we use

for derandomizing ZPP in the [IKV’18] result

assuming Kolmogorov’s conj is false

Umans’ pseudorandom generator

24

If Kolmogorov’s conjecture does not hold

for every 𝑘 exists a language 𝐿 ∈ P such that 𝐿 ∉ SIZE[n1]

Using the hard language 𝐿 we derandomize ZPP"#$% into SUBEXP"#$%

using Umans’ generator [Umans’02]

Putting everything together

25

Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7

• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Consider Kolmogorov Conjecture P ⊂ 𝑆𝐼𝑍𝐸[𝑛7] for some 𝑐

• If it is true ⇒ combining with RP ⊄ SIZE[𝑛4] assumption, we get a natural
property ⇒ we use it instead of MCSP in ZPP89:;

• If it is false ⇒ exists a hard function in P, which we use to derandomize
ZPP89:; into SUBEXP89:; in [IKV’18]

Next steps in strengthening our KL theorem

• Understand, whether an NP-intermediate version of MCSP is sufficient
to get a similar Karp-Lipton theorem as [IKV’18] got
• Then we would get that 𝑍𝑃𝑃 TUVWX	is a smaller class than 𝑍𝑃𝑃WYZ

• Currently, in one of the branches of our proof we assume that
Kolmogorov’s conjecture holds (P ⊂ SIZE[𝑛&])
• We need this assumption to extract a natural property from the hardness

assumption on RP
• Can we extract natural property without this assumption, or show that

existence of extractable natural property from hardness of RP implies that
Kolmogorov conjecture holds?

26

Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program is ETH hard

27

MCSP vs 1-NBP

28

Theorem 2: size of every read-once nondeterministic branching program computing
MCSP is 𝑁[(\]^\]^ _)

Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices

a

b

c

01

1

0

1

1

0

0

a = 0
b = 1
c = 1

29

Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1
b = 0

0
0

30

Best lower bounds for branching programs

• At least a 1 − &
%,

 fraction of functions require BP size %
,

`)

• The best lower bound: BP(ED)=Ω)-

	\]^-) [Nechiporuk, 1966]

• Recent results:
• BP(MCSP)='Ω 𝑁! [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
• Barrier on proving better than 'Ω 𝑁! for MCSP [Chen, Jin, Williams, 2019]

32

a

Read-Once Branching Programs

1-BP (1-NBP) if for every path every variable occurs no
more than 1 time

a

b

c

01

1

0

1

1

0

0

33

Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2[) 	[Borodin, Razborov, Smolensky, 1993]

• 1-NBP(⨁∆)= 2[()) [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
• ⨁∆ parity of triangles in a graph

• 1-NBP(!MCSP) = 2[()) [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

34

MCSP naturally a nondeterministic
problem, so it is harder to prove

a lower bound against NBP

Main result

35

Theorem: size of 1-NBP computing MCSP is 𝑁[(\]^\]^ _)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing
machine computing MCSP* requires time 𝑁[(\]^\]^ _)

(n x n)-Bipartite
Permutation Independent

Set Problem

ETH-hard

MCSP*

Exp-time
reduction

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

This result is tight for MCSP
with linear size parameter

In MCSP* input is
a truth table of

a partial function

(n x n)-Bipartite Permutation Independent Set

36

n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from

two quadrants
• Need to find exactly one vertex from

every row, and exactly one vertex from
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set

(n x n)-BPIS is hard for 1-NBP

Idea of the proof:

• Show that the minimum 1-NBP for the Bipartite Permutation Independent Set
has the same size as the minimum 1-NBP for the Bipartite Permutation Clique
• Adapt the proof of the lower bound on 1-NBP for CLIQUE_ONLY to get a lower

bound on the Bipartite Permutation Clique problem

37

Lemma: size of 1-NBP computing an (n x n)-BPIS is Ω(n!)

Progress so far

38

(n x n)-BPIS MCSP*

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

MCSP* and MCSP have the same 1-NBP
complexity

39

Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 * 1-NBP for MCSP10

t t

1-NBP for MCSP 10
t

1-NBP for MCSP*
10 *

t

Putting all together

40

(n x n)-BPIS MCSP*

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MCSP

Have the same
1-NBP complexity

If MCSP could be computed by a small 1-NBP,
then (n x n)-BPIS could be computed by a 1-NBP

of even smaller size.
That leads to a contradiction.

Upper bound

41

Lemma: MCSP on an input of length 2) with a size parameter 𝑠	 can
be computed by a 1-NBP of size 𝑂(2)2b \]^ b)

Corollary: our lower bound is tight for inputs with a linear size parameter

Simple guess
and check strategy

Open questions

• Show tight lower bound for MCSP with higher size parameters
• The same technique cannot work, as we cannot construct a truth table of a

function with higher than linear circuit complexity

• Extend this result to other models of computations
• For any model in which (n x n)-BPIS is hard and the reduction to the truth table

is efficiently computable the same size lower bound will hold

42

Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program Size Problem is ETH hard

43

Hardness of branching program minimization

44

Theorem 3: assuming Exponential Time Hypothesis every Turing machine computing
Partial Minimum Branching Program Size Problem requires time 𝑁[(\]^\]^ _)

holds also for minimizing
1-BP, k-BP, OBDD

Partial Minimum Branching Program Size Problem

45

Input:

• truth table of a partial Boolean function
𝑓: 0, 1) → 0, 1,∗

• size parameter 𝑠

Output:

yes, if exists a total function 𝑔 that is consistent with
𝑓 and can be computed by a branching program of
size at most 𝑠

1 * * 1 * 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2$

01

1

0

1
0

𝑥!

𝑥"

……

Branching program minimization

46

Previous results:
Minimization of OBDD is NP-hard
• Given an OBDD [Bollig, Wegener’96]
• Given a set of pairs (𝑥&, 𝑓(𝑥&)), … , (𝑥c, 𝑓(𝑥c)) [Takenaga, Yajima’93][Sieling’02]

Our result:
 Minimization of OBDD, k-BP, and BPs is ETH-hard given a truth-table of a partial
function

Other related minimization problems

Minimizing the size of
• DNF is NP-hard [Macek’79]
• DeMorgan Formula is ETH-hard [Ilango’21]
• First shown for a partial version in [Ilango’20]

• Partial MBPSP is ETH-hard [this work]

• Partial MCSP is ETH-hard [Ilango’20]
• Partial MCSP is NP-hard under randomized reductions [Hirahara’22]

47

Proof idea of hardness MBPSP*

48

Theorem: assuming Exponential Time Hypothesis every Turing machine
computing MBPSP* requires time 𝑁[(\]^\]^ _)

(n x n)-BPIS

ETH-hard

MBPSP*

Exp-time
reduction

We use the same proof structure introduce by Ilango for showing ETH-hardness
of MCSP*

The hardness reduction

49

(n x n)-BPIS

ETH-hard

MBPSP*

Exp-time
reduction

Graph G

1 * 0 * * 1 1 0 … 1

Truth table of a partial function 𝛾+
that depends on 6n variables

Key lemma: any total Boolean function consistent with 𝛾e can be computed
by a branching program of size 6𝑛 ó 𝐺 is a yes-instance of (n x n)-BPIS

The hardness reduction

50

Key lemma: any total Boolean function consistent with 𝛾e can be
computed by a branching program of size 6n iff G is a yes-
instance of (n x n)-BPIS

Proof idea:

𝛾e depends on 6𝑛 variables 𝑥&, … , 𝑥%), 𝑦&, … , 𝑦%), 𝑧&, … , 𝑧%),

There exists a BP computing 𝛾e that queries every variable at
most once => we can extract a permutation on [2𝑛]
corresponding to an independent set in G from such BP.

0 1

1

0
𝑥!

𝑧"

𝑦"
1

1

0
𝑥"

𝑦,

𝑧,
1

…

0

Corollaries

51

Corollary 1: assuming Exponential Time Hypothesis for every 𝑘 every Turing machine
computing Partial Minimum 𝑘-BP Size Problem requires time 𝑁'()*+)*+ ,)

(n x n)-Bipartite
Independent Set

Problem
MBPSP*

Unconditionally
hard for 1-NBP

Computable
by 1-BP

MBPSP

Have the same
1-NBP complexity

Corollary 2: size of 1-NBP computing MBPSP is 𝑁[(\]^\]^ _)

As the hardness is in distinguishing whether a BP queries every variable exactly once or not

Next steps in studying MBPSP

52

• Extend this result to total MBPSP
• Already known for DeMorgan Formulas [Ilango’21], DNFs [Masek’79]

• Show NP-hardness of MBPSP*
• Possibly, using techniques from the work of Hirahara [Hirahara’22]

Recap

• Results covered today:
• New Karp-Lipton style theorems from hardness assumption on RP [in progress]
• Unconditional 1-NBP hardness of MCSP [published, LATIN 2022]
• ETH hardness of Partial MBPSP [in submission, CCC 2024]

• With an unconditional 1-NBP hardness of branching program minimization for various
restricted versions of BPs

53

54

