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Outline

• Importance of studying computational complexity
• Meta-complexity
• Connections between circuit and structural complexity
• Complexity of representing MCSP via 1-NBP
• Complexity of branching program minimization

2



Computational complexity

Studies how much computational resources are required for solving a 
computational problem

Possible resources:
• Time
• Space
• Randomness
• Bits of communication
• ...
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focus of my work 



Computational models
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Branching program (BP)

one circuit/branching 
program for each

input length => consider 
a family of circuits/BPs



Known hardness results

• Almost all boolean functions require large circuits [Shannon’49]
• Method: counting argument
• The same result holds for branching programs and for time-complexity in the 

Turing machine model

• The best lower bound for an explicit function
• Ω(𝑛)	for Boolean circuits [Find, Golovnev, Hirsch, Kulikov’15]
• &Ω 𝑛%  for branching programs [Nechiporuk’66]
• &Ω(𝑛&.()	for Turing machines [Kalyanasundaram, Schnitger’92]
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Meta-complexity

Studies complexity of functions which compute complexity of an input 
function
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M
description of

a Boolean function this function is easy 

How easy is M?



Minimum Circuit Size Problem
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Input:

• truth table of a Boolean function 𝑓: 0, 1 ) → 0, 1
• size parameter 𝑠

Output:

yes, if 𝑓 can be computed by a circuit of size at most 𝑠

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2$
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Hardness of MCSP
• MCSP is in 𝑁𝑃

Guess a circuit and check, whether it computes 𝑓 or not

• MCSP ∈ 𝑃 ⇒ no strong PRGs [Razborov, Rudich, 1994]

• MCSP is 𝑁𝑃-complete ⇒ 𝐸𝑋𝑃 ≠ 𝑍𝑃𝑃 [Murray, Williams, 2015]

• Complexity of MCSP in restricted classes is important too:
If MCSP cannot be computed by

• branching program of size 𝑁!.#$

• or circuit of size 𝑁$.#$

Then NP ⊄ BP-SIZE[𝑛%] (or SIZE[𝑛%]) for all 𝑘 [Chen, Jin, Williams, 2019]
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Goal of my dissertation

Understand connections between circuit and branching program 
complexity of meta-complexity problems

Results I present:
I. New Karp-Lipton Theorems from RP circuit           

lower bounds
II. MCSP is hard for read-once nondeterministic                                 

branching programs 
III. Partial minimum branching program size problem             

is ETH-hard 

9

[G, Riazanov’22]

[G, Riazanov’24]

[Bun, Carmosino, G]



Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program Size Problem is ETH hard
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Original Karp-Lipton Theorem

Theorem [Karp–Lipton’80]: 

 NP ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PH = Σ!  
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non-uniform uniform

Polynomial hierarchy collapses 
to the second level

Every language in NP can be 
computed by a poly-size circuit



Recent Karp-Lipton style result

Theorem [Impagliazzo, Kabanets, Volkovich’18]: 

     PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP"#$%

Can we get stronger conditional collapses with a stronger complexity 
assumptions?
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PSPACE is bigger than PH
ZPP%&'( is smaller than Σ" 



Stronger Karp-Lipton theorems from 
additional assumptions

Theorem [Chen, McKay, Murray, Williams'19]:
 Suppose NP ⊄ SIZE[𝑛&] for all 𝑘.	Then for all 𝜖 > 0

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂'.) NP/𝑛*

Can we get a deeper collapse if we assume hardness of a complexity 
class smaller than NP? For instance, RP?
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It is not known whether
NP/𝑛)  is smaller than ZPP%&'( 



Our result
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Theorem 1: Suppose RP ⊄ SIZE[𝑛&] for all 𝑘. Then there exists 
𝑐 > 0 such that either

•  PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂'.) ZPP/𝑛+

•  PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂'.) SUBEXP"#$%



Proof ideas: what hardness of RP gives us
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Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7 
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'( [IKV’18]

MCSP oracle plays a role of a natural property =>
we need to extract a natural property from

the assumption RP	⊄	SIZE[𝑛*] 



Natural property
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An algorithm is called a natural property if

• It runs in polynomial time 
• It outputs no on all easy functions
• It outputs yes on a significant fraction of functions

An efficient algorithm for MCSP can be converted to a natural property

usefulness

largeness

constructivity



RP-verifiers
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𝑀(𝑥, 𝑟) is an RP-verifier for 𝐿 ∈ RP
• Runs in polynomial time
• Rejects all random seeds 𝑟 if 𝑥 is 

not in the language
• Accepts at least half of random 

seeds 𝑟 if 𝑥 is in the language

What if we fix an input 𝑥 ∈ 𝐿	 such that 
every 𝑟 that 𝑀(𝑥, 𝑟) accepts, has large circuit 

complexity? 

Algorithm 𝐴(𝑇) is a natural property
• Runs in polynomial time
• Rejects all input truth tables 𝑇 with 

a small circuit complexity
• Accepts a significant fraction of all 

truth tables



Natural property from RP seeds hardness
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Assume that exists a language 𝐿 in RP that does not have small seeds:
For every RP-verifier 𝑀 holds for infinitely many 𝑥 ∈ 𝐿 ∶

 𝑀 𝑥, 𝑟 = 1  implies that 𝑟 has a large circuit complexity

We get a natural property algorithm 𝐴 as follows:
• Fix an input 𝑥 such that 𝑀(𝑥, 𝑟) accepts the seed 𝑟 only if it is hard
• Set 𝐴(⋅) = 𝑀 𝑥,⋅ , then if 𝐴 𝑇 = 1   =>   𝑇 is hard

Non-uniform choice of x is the 
reason why we need an advice 



Proof ideas: what hardness of RP gives us
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Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7 
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'( [IKV’18]

MCSP oracle plays a role of a natural property =>
we need to extract a natural property from

the assumption RP	⊄ SIZE[𝑛*] 

But our current assumption: RP-seeds	⊄	SIZE[𝑛*] 



Easy-seeds and Kolmogorov’s conjecture
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We want to relate the circuit complexity of RP-seeds with the circuit 
complexity of RP

Conjecture: Suppose PSPACE ⊂ P/𝑝𝑜𝑙𝑦 and there exists 𝑘 such that
all RP-seeds ⊂ SIZE[𝑛&]. Then RP ⊂ SIZE[𝑛,)-.(&)]

Kolmogorov’s Conjecture: P ⊂ SIZE[𝑛+] for some 𝑐

We do not know a nice RP-complete language, and we 
do not know whether this conjecture is true



Easy-witness lemma for RP
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𝑁𝑃 ⊂ 𝑃/𝑝𝑜𝑙𝑦, 𝑅𝑃 has easy seeds, 𝑃 ⊂ 𝑆𝐼𝑍𝐸[𝑛&]  

We can construct a small circuit for every language 𝐿 in RP

To construct a fixed poly-size circuit for 𝐿 we use fixed poly-size 
circuits for:
• Circuit-SAT problem
• Seed for yes-instances
• Circuit for an RP-verifier

𝑃𝑆𝑃𝐴𝐶𝐸 ⊂ 𝑃/𝑝𝑜𝑙𝑦 Kolmogorov’s conjecture

Without Kolmogorov’s conjecture we cannot have a 
fixed bound on the circuit size for all RP verifiers



Proof ideas: what hardness of RP gives us
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Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0  so 
either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7 
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'( [IKV’18]

Assuming hardness of RP and Kolmogorov’s 
conjecture we get a natural property, which we use 

instead of MCSP in [IKV’18] result

assuming Kolmogorov’s conj is true



Proof ideas: what hardness of RP gives us
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Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7 
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Proof ideas:
Based on the [IKV’18] result we either:
• Get rid of the MCSP oracle
• Or derandomize ZPP into SUBEXP

PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊆ ZPP%&'( [IKV’18]

Assuming the Kolmogorov’s conjecture is false
we get a hard function in  P, which we use 

for derandomizing ZPP in the [IKV’18] result

assuming Kolmogorov’s conj is false



Umans’ pseudorandom generator
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If Kolmogorov’s conjecture does not hold

for every 𝑘 exists a language 𝐿 ∈ P such that 𝐿 ∉ SIZE[n1] 

Using the hard language 𝐿 we derandomize ZPP"#$% into SUBEXP"#$%

using Umans’ generator [Umans’02]



Putting everything together
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Theorem 1: Suppose RP	⊄ SIZE[𝑛4] for all 𝑘. Then there exists 𝑐 > 0 so either
• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ LINSPACE ⊂5.6 ZPP/𝑛7

• PSPACE ⊂ P/𝑝𝑜𝑙𝑦 ⇒ PSPACE ⊂5.6 SUBEXP89:;

Consider Kolmogorov Conjecture P ⊂ 𝑆𝐼𝑍𝐸[𝑛7] for some 𝑐

• If it is true ⇒ combining with RP ⊄ SIZE[𝑛4] assumption, we get a natural 
property ⇒ we use it instead of MCSP in ZPP89:;

• If it is false ⇒ exists a hard function in P, which we use to derandomize 
ZPP89:; into SUBEXP89:; in [IKV’18]



Next steps in strengthening our KL theorem

• Understand, whether an NP-intermediate version of MCSP is sufficient 
to get a similar Karp-Lipton theorem as [IKV’18] got
• Then we would get that 𝑍𝑃𝑃 TUVWX	is a smaller class than 𝑍𝑃𝑃WYZ

• Currently, in one of the branches of our proof we assume that 
Kolmogorov’s conjecture holds (P ⊂ SIZE[𝑛&])
• We need this assumption to extract a natural property from the hardness 

assumption on RP
• Can we extract natural property without this assumption, or show that 

existence of extractable natural property from hardness of RP implies that 
Kolmogorov conjecture holds?
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Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program is ETH hard
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MCSP vs 1-NBP  
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Theorem 2: size of every read-once nondeterministic branching program computing 
MCSP is 𝑁[(\]^\]^ _)



Branching program

• BP is a way to represent Boolean function:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is a number of vertices 

a

b

c

01

1

0

1

1

0

0

a = 0 
b = 1 
c = 1
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Non-deterministic branching program

• NBP additionally has non-deterministic nodes:
• non-deterministic nodes are unlabeled
• the value equals 1 ⟺ exists a path to 1-sink

a b

01

1

1

a = 1 
b = 0 

0
0
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Best lower bounds for branching programs

• At least a 1 − &
%,

  fraction of functions require BP size %
,

`)

• The best lower bound: BP(ED)=Ω )-

	\]^-)  [Nechiporuk, 1966]

• Recent results: 
• BP(MCSP)='Ω 𝑁!  [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
• Barrier on proving better than 'Ω 𝑁!  for MCSP [Chen, Jin, Williams, 2019]
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a

Read-Once Branching Programs

1-BP (1-NBP) if for every path every variable occurs no 
more than 1 time

a

b

c

01

1

0

1

1

0

0
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Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE_ONLY) = 2[ ) 	[Borodin, Razborov, Smolensky, 1993]

• 1-NBP(⨁∆)= 2[()) [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
• ⨁∆ parity of triangles in a graph

• 1-NBP(!MCSP) = 2[()) [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
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MCSP naturally a nondeterministic 
problem, so it is harder to prove

a lower bound against NBP



Main result
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Theorem: size of 1-NBP computing MCSP is 𝑁[(\]^\]^ _)

Theorem [Ilango’20]: assuming Exponential Time Hypothesis every Turing 
machine computing MCSP* requires time 𝑁[(\]^\]^ _)

(n x n)-Bipartite 
Permutation Independent 

Set Problem

ETH-hard

MCSP*

Exp-time 
reduction

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MCSP

Have the same
1-NBP complexity

This result is tight for MCSP 
with linear size parameter

In MCSP* input is
a truth table of

a partial function



(n x n)-Bipartite Permutation Independent Set
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n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from 

two quadrants
• Need to find exactly one vertex from 

every row, and exactly one vertex from 
every column, such that
• These vertices are from the two quadrants
• These vertices form independent set



(n x n)-BPIS is hard for 1-NBP

Idea of the proof:

• Show that the minimum 1-NBP for the Bipartite Permutation Independent Set 
has the same size as the minimum 1-NBP for the Bipartite Permutation Clique
• Adapt the proof of the lower bound on 1-NBP for CLIQUE_ONLY to get a lower 

bound on the Bipartite Permutation Clique problem
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Lemma: size of 1-NBP computing an (n x n)-BPIS is Ω(n!)



Progress so far
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(n x n)-BPIS MCSP*

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MCSP

Have the same
1-NBP complexity



MCSP* and MCSP have the same 1-NBP 
complexity
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Lemma: the size of the minimal 1-NBP computing MCSP* equals the size of the 
minimal 1–NBP computing MCSP

1-NBP for MCSP* 10 * 1-NBP for MCSP10

t t

1-NBP for MCSP 10
t

1-NBP for MCSP*
10 *

t



Putting all together

40

(n x n)-BPIS MCSP*

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MCSP

Have the same
1-NBP complexity

If MCSP could be computed by a small 1-NBP,
then (n x n)-BPIS could be computed by a 1-NBP

of even smaller size.
That leads to a contradiction.



Upper bound
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Lemma: MCSP on an input of length 2) with a size parameter 𝑠	 can 
be computed by a 1-NBP of size 𝑂(2)2b \]^ b	)

Corollary: our lower bound is tight for inputs with a linear size parameter

Simple guess
and check strategy



Open questions

• Show tight lower bound for MCSP with higher size parameters
• The same technique cannot work, as we cannot construct a truth table of a 

function with higher than linear circuit complexity

• Extend this result to other models of computations
• For any model in which (n x n)-BPIS is hard and the reduction to the truth table 

is efficiently computable the same size lower bound will hold
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Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program Size Problem is ETH hard
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Hardness of branching program minimization
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Theorem 3: assuming Exponential Time Hypothesis every Turing machine computing 
Partial Minimum Branching Program Size Problem requires time 𝑁[(\]^\]^ _)

holds also for minimizing
1-BP, k-BP, OBDD



Partial Minimum Branching Program Size Problem
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Input:

• truth table of a partial Boolean function 
𝑓: 0, 1 ) → 0, 1,∗

• size parameter 𝑠

Output:

yes, if exists a total function 𝑔 that is consistent with 
𝑓 and can be computed by a branching program of 
size at most 𝑠

1 * * 1 * 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2$

01

1

0

1
0

𝑥!

𝑥"

……



Branching program minimization
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Previous results:
Minimization of OBDD is NP-hard
• Given an OBDD [Bollig, Wegener’96] 
• Given a set of pairs (𝑥&, 𝑓(𝑥&)), … , (𝑥c, 𝑓(𝑥c)) [Takenaga, Yajima’93][Sieling’02]

Our result:
       Minimization of OBDD, k-BP,  and BPs is ETH-hard given a truth-table of a partial 
function 



Other related minimization problems

Minimizing the size of
• DNF is NP-hard [Macek’79]
• DeMorgan Formula is ETH-hard [Ilango’21]
• First shown for a partial version in [Ilango’20]

• Partial MBPSP is ETH-hard [this work]

• Partial MCSP is ETH-hard [Ilango’20]
• Partial MCSP is NP-hard under randomized reductions [Hirahara’22]
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Proof idea of hardness MBPSP*
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Theorem: assuming Exponential Time Hypothesis every Turing machine 
computing MBPSP* requires time 𝑁[(\]^\]^ _)

(n x n)-BPIS

ETH-hard

MBPSP*

Exp-time 
reduction

We use the same proof structure introduce by Ilango for showing ETH-hardness 
of MCSP*



The hardness reduction
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(n x n)-BPIS

ETH-hard

MBPSP*

Exp-time 
reduction

Graph G

1 * 0 * * 1 1 0 … 1

Truth table of a partial function 𝛾+
that depends on 6n variables

Key lemma: any total Boolean function consistent with 𝛾e can be computed 
by a branching program of size 6𝑛 ó 𝐺 is a yes-instance of (n x n)-BPIS



The hardness reduction
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Key lemma: any total Boolean function consistent with 𝛾e can be 
computed by a branching program of size 6n iff G is a yes-
instance of (n x n)-BPIS

Proof idea:

𝛾e depends on 6𝑛 variables 𝑥&, … , 𝑥%), 𝑦&, … , 𝑦%), 𝑧&, … , 𝑧%),

There exists a BP computing 𝛾e that queries every variable at 
most once => we can extract a permutation on [2𝑛] 
corresponding to an independent set in G from such BP.

0 1

1

0
𝑥!

𝑧"

𝑦"
1

1

0
𝑥"

𝑦,

𝑧,
1

…

0



Corollaries
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Corollary 1: assuming Exponential Time Hypothesis for every 𝑘 every Turing machine 
computing Partial Minimum 𝑘-BP Size Problem requires time 𝑁'()*+)*+ ,)

(n x n)-Bipartite 
Independent Set 

Problem
MBPSP*

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MBPSP

Have the same
1-NBP complexity

Corollary 2: size of 1-NBP computing MBPSP is 𝑁[(\]^\]^ _)

As the hardness is in distinguishing whether a BP queries every variable exactly once or not



Next steps in studying MBPSP
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• Extend this result to total MBPSP
• Already known for DeMorgan Formulas [Ilango’21], DNFs [Masek’79]

• Show NP-hardness of MBPSP*
• Possibly, using techniques from the work of Hirahara [Hirahara’22]



Recap

• Results covered today:
• New Karp-Lipton style theorems from hardness assumption on RP [in progress]
• Unconditional 1-NBP hardness of MCSP [published, LATIN 2022]
• ETH hardness of Partial MBPSP [in submission, CCC 2024]

• With an unconditional 1-NBP hardness of branching program minimization for various 
restricted versions of BPs
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