# Circuits and Branching Programs in Meta-Complexity

Ludmila Glinskih

Thesis committee: Mark Bun Sofya Raskhodnikova Steven Homer Marco Carmosino

Department of Computer Science Boston University April 5, 2024

# Outline

- Importance of studying computational complexity
- Meta-complexity
- Connections between circuit and structural complexity
- Complexity of representing MCSP via 1-NBP
- Complexity of branching program minimization

# Computational complexity

Studies how much computational resources are required for solving a computational problem

Possible resources:

- Time
- Space focus of my work
- Randomness
- Bits of communication
- .

#### Computational models



#### Known hardness results

- Almost all boolean functions require large circuits [Shannon'49]
  - Method: counting argument
  - The same result holds for branching programs and for time-complexity in the Turing machine model
- The best lower bound for an explicit function
  - $\Omega(n)$  for Boolean circuits [Find, Golovnev, Hirsch, Kulikov'15]
  - $\widetilde{\Omega}(n^2)$  for branching programs [Nechiporuk'66]
  - $\widetilde{\Omega}(n^{1.5})$  for Turing machines [Kalyanasundaram, Schnitger'92]

## Meta-complexity

Studies complexity of functions which compute complexity of an input function



# Minimum Circuit Size Problem

Input:

- truth table of a Boolean function  $f: \{0, 1\}^n \to \{0, 1\}$
- size parameter *s*

Output:

yes, if f can be computed by a circuit of size at most s

#### 1 0 0 1 0 1 1 0 ... 1

Truth table of f of length  $N = 2^n$ 



7

### Hardness of MCSP

• MCSP is in *NP* 

Guess a circuit and check, whether it computes f or not

- MCSP  $\in P \Rightarrow$  no strong PRGs [Razborov, Rudich, 1994]
- MCSP is NP-complete  $\Rightarrow EXP \neq ZPP$  [Murray, Williams, 2015]
- Complexity of MCSP in restricted classes is important too: If MCSP cannot be computed by
  - branching program of size  $N^{2.01}$
  - or circuit of size  $N^{1.01}$

Then NP  $\not\subset$  BP-SIZE[ $n^k$ ] (or SIZE[ $n^k$ ]) for all k [Chen, Jin, Williams, 2019]

# Goal of my dissertation

Understand connections between circuit and branching program complexity of meta-complexity problems

Results I present:

- I. New Karp-Lipton Theorems from RP circuit lower bounds
- II. MCSP is hard for read-once nondeterministic branching programs
- III. Partial minimum branching program size problem is ETH-hard



#### Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

- II. MCSP is Hard for Read-Once Nondeterministic Branching Programs
- III. Partial Minimum Branching Program Size Problem is ETH hard

# Original Karp-Lipton Theorem

#### **Theorem** [Karp–Lipton'80]:

Every language in NP can be computed by a poly-size circuit

$$NP \subset P/poly \Rightarrow PH = \Sigma_2$$
non-uniform uniform

#### Recent Karp-Lipton style result

**Theorem** [Impagliazzo, Kabanets, Volkovich'18]:

PSPACE is bigger than PH  $ZPP^{MCSP}$  is smaller than  $\Sigma_2$ 

#### $PSPACE \subset P/poly \Rightarrow PSPACE \subseteq ZPP^{MCSP}$

Can we get stronger conditional collapses with a stronger complexity assumptions?

# Stronger Karp-Lipton theorems from additional assumptions

Theorem [Chen, McKay, Murray, Williams'19]: Suppose NP  $\not\subset$  SIZE[ $n^k$ ] for all k. Then for all  $\epsilon > 0$ 

 $\mathsf{PSPACE} \subset \mathsf{P}/poly \Rightarrow \mathsf{PSPACE} \subset_{i.o} \mathsf{NP}/n^{\epsilon}$ 

It is not known whether  $NP/n^{\epsilon}$  is smaller than  $ZPP^{MCSP}$ 

Can we get a deeper collapse if we assume hardness of a complexity class smaller than NP? For instance, RP?

#### Our result

**Theorem 1:** Suppose RP  $\not\subset$  SIZE[ $n^k$ ] for all k. Then there exists c > 0 such that either

- PSPACE  $\subset$  P/poly  $\Rightarrow$  LINSPACE  $\subset_{i.o}$  ZPP/n<sup>c</sup>
- PSPACE  $\subset$  P/poly  $\Rightarrow$  PSPACE  $\subset_{i.o}$  SUBEXP<sup>MCSP</sup>

## Proof ideas: what hardness of RP gives us

 $PSPACE \subset P/poly \Rightarrow PSPACE \subseteq ZPP^{MCSP}$  [IKV'18]

**Theorem 1:** Suppose  $\mathbb{RP} \not\subset SIZE[n^k]$  for all k. Then there exists c > 0 so either

- PSPACE  $\subset$  P/poly  $\Rightarrow$  LINSPACE  $\subset_{i.o}$  ZPP/n<sup>c</sup>
- PSPACE  $\subset$  P/poly  $\Rightarrow$  PSPACE  $\subset_{i.o}$  SUBEXP<sup>MCSP</sup>

Proof ideas:

Based on the [IKV'18] result we either:

- Get rid of the MCSP oracle
- Or derandomize ZPP into SUBEXP

MCSP oracle plays a role of a *natural property* => we need to extract a natural property from the assumption  $RP \not\subset SIZE[n^k]$ 

# Natural property

An algorithm is called a natural property if

- It runs in polynomial time
- It outputs no on all easy functions
- It outputs *yes* on a significant fraction of functions

| constructivity |
|----------------|
| usefulness     |
| largeness      |

An efficient algorithm for MCSP can be converted to a natural property

### **RP-verifiers**

M(x,r) is an RP-verifier for  $L \in RP$ 

- Runs in polynomial time
- Rejects **all** random seeds *r* if *x* is not in the language
- Accepts at least **half** of random seeds *r* if *x* is in the language

#### Algorithm A(T) is a natural property

- Runs in polynomial time
- Rejects **all** input truth tables *T* with a small circuit complexity
- Accepts a **significant fraction** of all truth tables

What if we fix an input  $x \in L$  such that every r that M(x,r) accepts, has large circuit complexity?

#### Natural property from RP seeds hardness

Assume that exists a language L in RP that does not have small seeds:

For every RP-verifier M holds for infinitely many  $x \in L$ : M(x,r) = 1 implies that r has a large circuit complexity

We get a natural property algorithm A as follows:

- Fix an input x such that M(x,r) accepts the seed r only if it is hard
- Set  $A(\cdot) = M(x, \cdot)$ , then if  $A(T) = 1 \implies T$  is hard

Non-uniform choice of **x** is the reason why we need an advice

# Proof ideas: what hardness of RP gives us

 $PSPACE \subset P/poly \Rightarrow PSPACE \subseteq ZPP^{MCSP}$  [IKV'18]

**Theorem 1:** Suppose  $\mathbb{RP} \not\subset SIZE[n^k]$  for all k. Then there exists c > 0 so either

- PSPACE  $\subset$  P/poly  $\Rightarrow$  LINSPACE  $\subset_{i.o}$  ZPP/n<sup>c</sup>
- PSPACE  $\subset$  P/poly  $\Rightarrow$  PSPACE  $\subset_{i.o}$  SUBEXP<sup>MCSP</sup>

Proof ideas:

Based on the [IKV'18] result we either:

- Get rid of the MCSP oracle
- Or derandomize ZPP into SUBEXP

MCSP oracle plays a role of a *natural property* => we need to extract a natural property from the assumption  $\mathbf{RP} \not\subset \mathbf{SIZE}[n^k]$ 

But our current assumption: RP-seeds  $\not\subset$  SIZE $[n^k]$ 

# Easy-seeds and Kolmogorov's conjecture

We want to relate the circuit complexity of RP-seeds with the circuit complexity of RP  $% \left( R^{2}\right) =0$ 

**Conjecture:** Suppose PSPACE  $\subset$  P/poly and there exists k such that all RP-seeds  $\subset$  SIZE[ $n^k$ ]. Then RP  $\subset$  SIZE[ $n^{poly(k)}$ ]

We do not know a *nice* RP-complete language, and we do not know whether this conjecture is true

Kolmogorov's Conjecture:  $P \subset SIZE[n^c]$  for some c

# Easy-witness lemma for RP



We can construct a small circuit for every language L in RP

To construct a fixed poly-size circuit for *L* we use fixed poly-size circuits for:

- Circuit-SAT problem
- Seed for *yes*-instances
- Circuit for an RP-verifier

Without Kolmogorov's conjecture we cannot have a fixed bound on the circuit size for all RP verifiers

# Proof ideas: what hardness of RP gives us

 $PSPACE \subset P/poly \Rightarrow PSPACE \subseteq ZPP^{MCSP}$  [IKV'18]

**Theorem 1:** Suppose  $\mathbb{RP} \not\subset SIZE[n^k]$  for all k. Then there exists c > 0 so either

• PSPACE  $\subset$  P/poly  $\Rightarrow$  LINSPACE  $\subset_{i.o}$  ZPP/n<sup>c</sup>

assuming Kolmogorov's conj is true

• PSPACE  $\subset$  P/poly  $\Rightarrow$  PSPACE  $\subset_{i.o}$  SUBEXP<sup>MCSP</sup>

#### Proof ideas:

Based on the [IKV'18] result we either:

- Get rid of the MCSP oracle
- Or derandomize ZPP into SUBEXP

Assuming hardness of RP and Kolmogorov's conjecture we get a natural property, which we use instead of MCSP in [IKV'18] result

### Proof ideas: what hardness of RP gives us

 $PSPACE \subset P/poly \Rightarrow PSPACE \subseteq ZPP^{MCSP}$  [IKV'18]

**Theorem 1:** Suppose  $\mathbb{RP} \not\subset SIZE[n^k]$  for all k. Then there exists c > 0 so either

- PSPACE  $\subset$  P/poly  $\Rightarrow$  LINSPACE  $\subset_{i.o}$  ZPP/n<sup>c</sup>
- PSPACE  $\subset$  P/poly  $\Rightarrow$  PSPACE  $\subset_{i.o}$  SUBEXP<sup>MCSP</sup>

assuming Kolmogorov's conj is false

Proof ideas:

Based on the [IKV'18] result we either:

- Get rid of the MCSP oracle
- Or derandomize ZPP into SUBEXP

Assuming the Kolmogorov's conjecture is false we get a hard function in P, which we use for derandomizing ZPP in the [IKV'18] result

#### Umans' pseudorandom generator

If Kolmogorov's conjecture **does not** hold

for every k exists a language  $L \in P$  such that  $L \notin SIZE[n^k]$ 

Using the hard language L we derandomize  $ZPP^{MCSP}$  into  $SUBEXP^{MCSP}$ 

using Umans' generator [Umans'02]

# Putting everything together

**Theorem 1:** Suppose  $RP \not\subset SIZE[n^k]$  for all k. Then there exists c > 0 so either

- PSPACE  $\subset$  P/poly  $\Rightarrow$  LINSPACE  $\subset_{i.o}$  ZPP/n<sup>c</sup>
- PSPACE  $\subset$  P/poly  $\Rightarrow$  PSPACE  $\subset_{i.o}$  SUBEXP<sup>MCSP</sup>

Consider Kolmogorov Conjecture  $P \subset SIZE[n^c]$  for some c

- If it is true  $\Rightarrow$  combining with RP  $\not\subset$  SIZE[ $n^k$ ] assumption, we get a natural property  $\Rightarrow$  we use it instead of MCSP in ZPP<sup>MCSP</sup>
- If it is false  $\Rightarrow$  exists a hard function in P, which we use to derandomize  $ZPP^{MCSP}$  into  $SUBEXP^{MCSP}$  in [IKV'18]

# Next steps in strengthening our KL theorem

- Understand, whether an NP-intermediate version of MCSP is sufficient to get a similar Karp-Lipton theorem as [IKV'18] got
  - Then we would get that  $ZPP^{\widetilde{MCSP}}$  is a smaller class than  $ZPP^{SAT}$
- Currently, in one of the branches of our proof we assume that Kolmogorov's conjecture holds (P  $\subset$  SIZE[ $n^k$ ])
  - We need this assumption to extract a natural property from the hardness assumption on  $\ensuremath{RP}$
  - Can we extract natural property without this assumption, or show that existence of extractable natural property from hardness of **RP** implies that Kolmogorov conjecture holds?

#### Plan for the remainder of the talk

I. New Karp-Lipton Theorems from RP Circuit Lower Bounds

II. MCSP is Hard for Read-Once Nondeterministic Branching Programs

III. Partial Minimum Branching Program is ETH hard

#### MCSP vs 1-NBP

**Theorem 2:** size of every read-once nondeterministic branching program computing MCSP is  $N^{\Omega(\log \log N)}$ 

# Branching program

- BP is a way to represent Boolean function:
  - directed graph without cycles
  - one source
  - two sinks: labeled with 0 and 1
  - all other vertices labeled with variables
  - values of variables on edges
- Size of a BP is a number of vertices



# Non-deterministic branching program

- NBP additionally has non-deterministic nodes:
  - non-deterministic nodes are unlabeled
  - the value equals  $1 \Leftrightarrow$  exists a path to 1-sink



# Best lower bounds for branching programs

• At least a 
$$1 - \frac{1}{2^n}$$
 fraction of functions require BP size  $\frac{2^n}{4n}$ 

• The best lower bound: BP(ED)=
$$\Omega\left(\frac{n^2}{\log^2 n}\right)$$
 [Nechiporuk, 1966]

- Recent results:
  - BP(MCSP)= $\widetilde{\Omega}(N^2)$  [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]
  - Barrier on proving better than  $\widetilde{\Omega}(N^2)$  for MCSP [Chen, Jin, Williams, 2019]

# Read-Once Branching Programs

1-BP (1-NBP) if for every path every variable occurs no more than 1 time



#### Known lower bounds for 1-NBPs

• 1-NBP(CLIQUE\_ONLY) =  $2^{\Omega(\sqrt{n})}$  [Borodin, Razborov, Smolensky, 1993]

- 1-NBP( $\bigoplus_{\Delta}$ )=  $2^{\Omega(n)}$  [Duris, Hromkovic, Jukna, Sauerhoff, Schnitger, 2004]
  - $\bigoplus_{\Delta}$  parity of triangles in a graph
- 1-NBP(!MCSP) =  $2^{\Omega(n)}$  [Cheraghchi, Kabanets, Lu, Myrisiotis, 2019]

MCSP naturally a nondeterministic problem, so it is harder to prove a lower bound against NBP

### Main result

This result is tight for MCSP with linear size parameter

**Theorem:** size of 1-NBP computing MCSP is  $N^{\Omega(\log \log N)}$ 

Theorem [Ilango'20]: assuming Exponential Time Hypothesis every Turing machine computing MCSP\* requires time  $N^{\Omega(\log \log N)}$ 



# (n x n)-Bipartite Permutation Independent Set



- Graph with 2n x 2n vertices,
- Edges exist only between vertices from two quadrants
- Need to find exactly one vertex from every row, and exactly one vertex from every column, such that
  - These vertices are from the two quadrants
  - These vertices form independent set

# (n x n)-BPIS is hard for 1-NBP

**Lemma:** size of 1-NBP computing an  $(n \times n)$ -BPIS is  $\Omega(n!)$ 

Idea of the proof:

- Show that the minimum 1-NBP for the Bipartite Permutation Independent Set has the same size as the minimum 1-NBP for the Bipartite Permutation Clique
- Adapt the proof of the lower bound on 1-NBP for CLIQUE\_ONLY to get a lower bound on the Bipartite Permutation Clique problem

#### Progress so far



# MCSP\* and MCSP have the same 1-NBP complexity

**Lemma:** the size of the minimal 1-NBP computing MCSP\* equals the size of the minimal 1–NBP computing MCSP



## Putting all together



# Upper bound

Simple guess and check strategy

**Lemma:** MCSP on an input of length  $2^n$  with a size parameter s can be computed by a 1-NBP of size  $O(2^n 2^{s \log s})$ 

Corollary: our lower bound is tight for inputs with a linear size parameter

# Open questions

- Show tight lower bound for MCSP with higher size parameters
  - The same technique cannot work, as we cannot construct a truth table of a function with higher than linear circuit complexity
- Extend this result to other models of computations
  - For any model in which (n x n)-BPIS is hard and the reduction to the truth table is efficiently computable the same size lower bound will hold

#### Plan for the remainder of the talk

- I. New Karp-Lipton Theorems from RP Circuit Lower Bounds
- II. MCSP is Hard for Read-Once Nondeterministic Branching Programs
- III. Partial Minimum Branching Program Size Problem is ETH hard

# Hardness of branching program minimization

**Theorem 3:** assuming Exponential Time Hypothesis every Turing machine computing Partial Minimum Branching Program Size Problem requires time  $N^{\Omega(\log \log N)}$ 

> holds also for minimizing 1-BP, k-BP, OBDD

# Partial Minimum Branching Program Size Problem

Input:

- truth table of a partial Boolean function  $f: \{0, 1\}^n \rightarrow \{0, 1, *\}$
- size parameter *s*

#### Output:

yes, if exists a total function g that is consistent with f and can be computed by a branching program of size at most s



Truth table of f of length  $N = 2^n$ 



# Branching program minimization

Previous results:

Minimization of OBDD is NP-hard

- Given an OBDD [Bollig, Wegener'96]
- Given a set of pairs  $(x_1, f(x_1)), \dots, (x_t, f(x_t))$  [Takenaga, Yajima'93][Sieling'02]

Our result:

Minimization of OBDD, k-BP, and BPs is **ETH**-hard given a truth-table of a partial function

# Other related minimization problems

Minimizing the size of

- DNF is NP-hard [Macek'79]
- DeMorgan Formula is ETH-hard [llango'21]
  - First shown for a partial version in [llango'20]
- Partial MBPSP is ETH-hard [this work]
- Partial MCSP is ETH-hard [llango'20]
- Partial MCSP is NP-hard under randomized reductions [Hirahara'22]

## Proof idea of hardness MBPSP\*

Theorem: assuming Exponential Time Hypothesis every Turing machine computing MBPSP\* requires time  $N^{\Omega(\log \log N)}$ 

We use the same proof structure introduce by Ilango for showing ETH-hardness of MCSP\*



# The hardness reduction



**Key lemma:** any total Boolean function consistent with  $\gamma_G$  can be computed by a branching program of size  $6n \Leftrightarrow G$  is a yes-instance of  $(n \ge n)$ -BPIS

# The hardness reduction

**Key lemma:** any total Boolean function consistent with  $\gamma_G$  can be computed by a branching program of size 6n iff **G** is a yes-instance of (n x n)-BPIS

Proof idea:

 $\gamma_G$  depends on 6n variables  $x_1, \ldots, x_{2n}, y_1, \ldots, y_{2n}, z_1, \ldots, z_{2n}$ ,

There exists a BP computing  $\gamma_G$  that queries every variable at most once => we can extract a permutation on [2n] corresponding to an independent set in G from such BP.



#### Corollaries

**Corollary 1:** assuming Exponential Time Hypothesis for every k every Turing machine computing Partial Minimum k-BP Size Problem requires time  $N^{\Omega(\log \log N)}$ 

As the hardness is in distinguishing whether a BP queries every variable exactly once or not

**Corollary 2:** size of 1-NBP computing MBPSP is  $N^{\Omega(\log \log N)}$ 



### Next steps in studying MBPSP

- Extend this result to total MBPSP
  - Already known for DeMorgan Formulas [Ilango'21], DNFs [Masek'79]
- Show NP-hardness of MBPSP\*
  - Possibly, using techniques from the work of Hirahara [Hirahara'22]

## Recap

- Results covered today:
  - New Karp-Lipton style theorems from hardness assumption on RP [in progress]
  - Unconditional 1-NBP hardness of MCSP [published, LATIN 2022]
  - ETH hardness of Partial MBPSP [in submission, CCC 2024]
    - With an unconditional 1-NBP hardness of branching program minimization for various restricted versions of BPs