
Partial Minimum Branching Program
Size Problem is ETH-Hard

Ludmila Glinskih                     

1

Meta-Complexity Reunion
Simons Institute for the Theory of Computing

April 15, 2024

Based on joint work with Artur Riazanov (EPFL)



Minimum Circuit Size Problem
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Input:

• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1
• size parameter 𝑠

Output:

yes, if 𝑓 can be computed by a circuit of size at most 𝑠
no, otherwise

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!
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Minimum C-Circuit Size Problem
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Input:

• truth table of a Boolean function 𝑓: 0, 1 ! → 0, 1
• size parameter 𝑠

Output:

yes, if 𝑓 can be computed by a C-circuit of size at most 𝑠
no, otherwise

1 0 0 1 0 1 1 0 … 1

Truth table of 𝑓 of length 𝑁 = 2!
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What other circuit types we may consider?



Hardness of C-MCSP for various circuit classes

NP-hardness is known for C=
• DNF 
• DNF ∘ XOR 
• AC0 formula

ETH-hardness is known for DeMorgan Boolean formulas 

This work: what happens if we consider C as Branching Programs?
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[Masek’80]

[Hirahara, Oliveira, Santhanam’19]

[Ilango’20]

[Ilango’20]



Branching program

• Branching Programs (BPs) represent Boolean functions:
• directed graph without cycles
• one source
• two sinks: labeled with 0 and 1
• all other vertices labeled with variables
• values of variables on edges

• Size of a BP is the number of vertices 
• k-BP: on every path every variable occurs no more than 

k time
• Oblivious 1-BP (OBDD): an ordered version of 1-BP
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Complexity class with logarithmic space

BP(𝑓)=poly ⇔ 𝑓 is in L/poly 

LBs on the size of BP representation imply space-complexity LBs

a d v i c ei n p u t

0 1 1
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read-only

n poly(n)

O(log(n))



Branching program minimization
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Minimization of OBDD and 1-BP is NP-hard
• Given 𝑓 as an OBDD find an equivalent OBDD of size 𝑠
• Given 𝑓 as a 1-BP find a 1-BP of size 𝑠
• Given a set of pairs (𝑥), 𝑓(𝑥))), … , (𝑥*, 𝑓(𝑥*))

• Find an OBDD of size 𝑠 consistent with 𝑓 given an 
order of variables
• Approximate the min size of a 1-BP consistent with 𝑓

[Bollig, Wegener’96]

[Sieling’02]

[Takenaga, Yajima’00]

[Sieling’02]

There exists a 𝑂(3!𝑝𝑜𝑙𝑦(𝑛))-time algorithm for OBDD-MCSP [Friedman, Supowit’88]

input length 𝑁 = 2!



Hardness of branching program minimization
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Theorem: assuming Exponential Time Hypothesis every Turing machine computing 
Partial Minimum Branching Program Size Problem requires time 𝑁+(-./-./ 0)

holds also for minimizing
1-BP, k-BP, OBDD



Partial minimization problems

Minimizing the size of
• DNF is NP-hard [Macek’79]
• DeMorgan Formula is ETH-hard [Ilango’21]
• Partial MBPSP is ETH-hard [this work]

• Partial MCSP is ETH-hard [Ilango’20]
• Partial MCSP is NP-hard under randomized reductions [Hirahara’22]
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First shown for partial



(n x n)-Bipartite 
Permutation Independent 

Set Problem

Proof idea of hardness of MBPSP*
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Theorem: assuming Exponential Time Hypothesis every Turing machine 
computing MBPSP* requires time 𝑁+(-./-./ 0)

Ω(𝑛!)-hard
under ETH-hard

MBPSP*

Exp-time 
reduction

We use the same proof structure introduced by Ilango for showing ETH-hardness 
of MCSP*



(n x n)-Bipartite Permutation Independent Set
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n

n

n n

• Graph with 2n x 2n vertices,
• Edges exist only between vertices from 

two quadrants
• Determine whether there exists a set with 

one vertex from every row, and one 
vertex from every column, such that
• These vertices are from the two quadrants
• These vertices form independent set



(n x n)-Bipartite 
Permutation Independent 

Set Problem

The hardness reduction
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ETH-hard

MBPSP*

Graph G

1 * 0 * * 1 1 0 … 1

Truth table of a partial function 𝛾%
that depends on 𝟔𝒏 variables

Key lemma: there exists a total function consistent with 𝛾5 which can be 
computed by a branching program of size 𝟔𝒏ó 𝐺 is a yes-instance of (n x n)-BPIS

n

Exp-time 
reduction



The hardness reduction

13

Graph G

1 * 0 * * 1 1 0 … 1

Truth table of a partial function 𝛾%
that depends on 𝟔𝒏 variables

Key lemma: there exists a total function consistent with 𝛾5 which can be computed 
by a branching program of size 𝟔𝒏ó 𝐺 is a yes-instance of (n x n)-BPIS

n

Idea of Ilango’s proof for circuit and formulas:
𝛾& depends on 6𝑛 variables 𝑥', … , 𝑥(), 𝑦', … , 𝑦(), 𝑧', … , 𝑧()
a good permutation in G exists iff we can compute 𝛾& as ⋁ (𝑦* ∧ 𝑥+) ∨ 𝑧*

computable by a read-once 
monotone formula



The hardness reduction
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Key lemma: there exists a total Boolean function consistent with 
𝛾5 which can be computed by a branching program of size 6𝑛ó
G is a yes-instance of (n x n)-BPIS

Proof idea:

𝛾5 depends on 6𝑛 variables

If 𝐺 has a bipartite permutation independent set, then
• 𝛾5 can be computed by a very restricted BP in which every 

variable occurs at most once
• As 𝛾5 is sensitive in all variables that MBPSP*(𝛾5)= 6𝑛

We call such BPs
once-appearance BPs
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The hardness reduction
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If there exists a once-appearance BP computing 𝛾5 => we can 
extract a permutation on [2𝑛] corresponding to an independent 
set in G from such BP

𝛾5 depends on 6𝑛 variables 𝑥), … , 𝑥6!, 𝑦), … , 𝑦6!, 𝑧), … , 𝑧6!

A once-appearance BP for 𝛾5 has a very specific shape:
• Topological sort of the nodes forms groups of 𝑥𝑦𝑧-triplets
• In each such triplet 𝑦 and 𝑧 have the same index
• If for every triplet 𝑥7, 𝑦8, 𝑧8 we map 𝑘 → 𝑖, we get a bipartite 

permutation set in 𝐺
0 1
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Corollaries: ETH-hardness of k-BP minimization
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Corollary 1: assuming Exponential Time Hypothesis for every 𝑘 every Turing machine 
computing Partial Minimum 𝑘-BP Size Problem requires time 𝑁+(-./-./ 0)

We showed that it is hard to distinguish whether 𝛾5 can be represented by a once-
appearance BP or not

or OBDD



Corollaries: 1-NBP complexity
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(n x n)-Bipartite 
Independent Set 

Problem
MBPSP*

Unconditionally 
hard for 1-NBP

Computable 
by 1-BP

MBPSP

Have the same
1-NBP complexity

Corollary 2: size of 1-NBP computing MBPSP is 𝑁+(-./-./ 0)



Corollaries: NP and coNP-hardness

18

Corollary 3: the problem of compressing an input partial BP to a specific size is NP 
and coNP-hard

1 * 0 * * 1 1 0 … 1

Truth table of a partial function 𝛾%
that depends on 𝟔𝒏 variables

This partial function can be easily computed by a 
2-BP over {0,1,*} of polynomial size and can be 
compressed to a BP of linear size iff G is in BPIS

This total function can be easily computed by a 
4-BP over {0,1} of size 0 if the formula 𝜙 is 
unsatisfiable 

𝜙 ∈ 𝑈𝑁𝑆𝐴𝑇'

NP-hardness

coNP-hardness



Next steps: hardness of total MBPSP
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Extend this result to total MBPSP
• Already shown for DeMorgan Formulas [Ilango’21], DNFs [Masek’79]

Can we use ideas like what Ilango used for Formulas?
• Not sure, as BPs are very good in re-using some of its states (similarly to circuits)

But possibly showing the reduction from partial 1-BP minimization to total 
1-BP minimization



Next steps: connections to other results
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MBPSP, similarly to MCSP, is a sparse language
• Existence of OWF is equivalent to hardness-on-average of a 

sparse language 
• Better-than-linear LB for some sparse language 

=>  NP ⊄ SIZE[𝑛7] for all 𝑘

[Liu, Pass’23]

[Chen, Jin, Williams’19]

Can we show any connections specific to MBPSP?



Next steps: oaBPs
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In our proof we use a very weak class of BPs: once-appearance BPs
How powerful is this class of BPs?

• Every read-once formulas over basis without XOR (and its negation) can be 
converted to a once-appearance BP of the same or smaller size
• 𝑦 ∧ 𝑥 ∨ (𝑧 ∧ ¬𝑥) can be computed by a once-appearance BP, but cannot be 

computed by read-once DeMorgan formulas

Any other connections?



Recap

• Partial MBPSP is ETH hard
• Holds for various restricted versions of BPs such as OBDDs, 1-BPs, k-BPs

• Unconditional 1-NBP hardness of BP minimization for general and 
restricted BPs

• NP- and coNP-hardness of compressing branching programs
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