Partial Minimum Branching Program
Size Problem is ETH-Hard

Ludmila Glinskih

Based on joint work with Artur Riazanov (EPFL)

Meta-Complexity Reunion
Simons Institute for the Theory of Computing
April 15, 2024

Minimum Circuit Size Problem

Input: 1/0lo0ol1l0/111/0]. 11
e truth table of a Boolean function f:{0,1}"* — {0,1} Truthtable of f of length N' = 2"

* Size parameter s

Output: @ @

yes, if f can be computed by a circuit of size at most s

no, otherwise @ @

Minimum C-Circuit Size Problem

What other circuit types we may consider?

10010 11 0], 1

Truth table of f of length N = 2"

Input:
e truth table of a Boolean function f: {0,1}"* — {0, 1}

* Size parameter s

Output: @ @

yes, if f can be computed by a C-circuit of size at most s

no, otherwise @ @

Hardness of C-MCSP for various circuit classes

NP-hardness is known for C=

e DNF [Masek’80]

e DNF o XOR [Hirahara, Oliveira, Santhanam’19]

 ACO formula [llango’20]

ETH-hardness is known for DeMorgan Boolean formulas [llango’20]

This work: what happens if we consider C as Branching Programs?

Branching program

Branching Programs (BPs) represent Boolean functions:
 directed graph without cycles
* Oone source

two sinks: l[abeled with 0 and 1

all other vertices labeled with variables

values of variables on edges

Size of a BP is the number of vertices

k-BP: on every path every variable occurs no more than
K time

Oblivious 1-BP (OBDD): an ordered version of 1-BP

O T QO

= O

Complexity class with logarithmic space

ﬂﬂﬂéﬂ----- n poly(n)
T read-only 7
DR ovog(n)

BP(f)=poly & fisin L/poly

LBs on the size of BP representation imply space-complexity LBs

Branching program minimization

Minimization of OBDD and 1-BP is NP-hard
* Given f as an OBDD find an equivalent OBDD of size s
* Given f as a 1-BP find a 1-BP of size s

* Given a set of pairs (x1, f(x1)), ..., (x¢, (%))

* Find an OBDD of size s consistent with f given an
order of variables

* Approximate the min size of a 1-BP consistent with f

There exists a 0(3™poly(n))-time algorithm for OBDD-MCSP

input length N = 2"

[Bollig, Wegener’96]

[Sieling’02]

[Takenaga, Yajima’'00]

[Sieling’02]

[Friedman, Supowit’88]

Hardness of branching program minimization

Theorem: assuming Exponential Time Hypothesis every Turing machine computing
Partial Minimum Branching Program Size Problem requires time N<loglogN)

holds also for minimizing
1-BP, k-BP, OBDD

Partial minimization problems

Minimizing the size of

* DNF is NP-hard [Macek’79]

 DeMorgan Formula is ETH-hard [llango’21]
Partial MBPSP is ETH-hard [this work]
Partial MCSP is ETH-hard [llango’20]
Partial MCSP is NP-hard under randomized reductions [Hirahara’22]

- First shown for partial

Proof idea of hardness of MBPSP*

Theorem: assuming Exponential Time Hypothesis every Turing machine
computing MBPSP* requires time N<¥loglog V)

We use the same proof structure introduced by llango for showing ETH-hardness
of MCSP*

Exp-time
reduction

(n x n)-Bipartite

MBPSP*

Permutation Independent —

Set Problem

Q(n!)-hard
under ETH-hard

10

(n x n)-Bipartite Permutation Independent Set

n n

* Graph with 2n x 2n vertices,

* Edges exist only between vertices from
two quadrants

e Determine whether there exists a set with

one vertex from every row, and one
vertex from every column, such that
* These vertices are from the two quadrants
* These vertices form independent set

0000|0000

OO00O|000
OCOOOPYOO
OO0000000.

OO

11

The hardness reduction

Exp-time
reduction

Permutation Independent —

Set Problem

(n x n)-Bipartite

MBPSP*

ETH-hard

O Ol000O0
OCOOROOOO
3828825 |
00O 8 O nnnnnn!
00O Q0O . _
O00O O Truth table of a partial function y;

Graph G OOOO\OOOO that depends on 6n variables

Key lemma: there exists a total function consistent with y; which can be
computed by a branching program of size 6n < G is a yes-instance of (n x n)-BPIS

12

The hardness reduction

Graph G

O

AAOOO

OO
OO

000
000

0000|0000
/

oqog
09

OO
OO0OO0OI0OO0OO

0000
0000

00

—

S

) 1 *Jol*|*j1]1]0]. |1

Truth table of a partial function y;
that depends on 6n variables

Key lemma: there exists a total function consistent with y which can be computed
by a branching program of size 6n <> G is a yes-instance of (n x n)-BPIS

Idea of llango’s proof for circuit and formulas:

Y¢ depends on 6n variables X4, ..., Xon, V1, «» Von, Z1, «+» Zon

a good permutation in G exists iff we can compute y; as V((y; A xx) V z;)

computable by a read-once
monotone formula 13

The hardness reduction

Key lemma: there exists a total Boolean function consistent with
Y Which can be computed by a branching program of size 6n <
G is a yes-instance of (n x n)-BPIS

Proof idea:

Y¢ depends on 6n variables

If G has a bipartite permutation independent set, then

* ¥ can be computed by a very restricted BP in which every We call such BPs
variable occurs at most once once-appearance BPs

* As y¢ is sensitive in all variables that MBPSP*(y ;)= 6n

14

The hardness reduction

If there exists a once-appearance BP computing y; => we can
extract a permutation on [2n] corresponding to an independent
setin G from such BP

Y¢ depends on 6n variables X1, ..., Xon, Y1, wo» Yon, Z1, =» Z2n

A once-appearance BP for y. has a very specific shape:
* Topological sort of the nodes forms groups of xyz-triplets
* In each such triplet y and z have the same index

* If for every triplet x, y;, z; we map k — i, we get a bipartite
permutation setin G

15

Corollaries: ETH-hardness of k-BP minimization

We showed that it is hard to distinguish whether Y. can be represented by a once-
appearance BP or not

Corollary 1: assuming Exponential Time Hypothesis for every k every Turing machine
computing Partial Minimum k-BP Size Problem requires time N (loglog N)

or OBDD

Corollaries: 1-NBP complexity

Corollary 2: size of 1-NBP computing MBPSP is N ¢(oglog V)

(n x n)-Bipartite

Independent Set —

Problem

Computable
Unconditionally by 1-BP

hard for 1-NBP

Have the same
1-NBP complexity

17

Corollaries: NP and coNP-hardness

Corollary 3: the problem of compressing an input partial BP to a specific size is NP
and coNP-hard

NP-hardness This partial function can be e.asiIY computed by a
2-BP over {0,1,*} of polynomial size and can be

Truth table of a partial function y, compressed to a BP of linear size iff G is in BPIS
that depends on 6n variables

This total function can be easily computed by a

coNP-hardness ¢ € UNSAT, 4-BP over {0,1} of size O if the formula ¢ is
unsatisfiable

Next steps: hardness of total MBPSP

Extend this result to total MBPSP
* Already shown for DeMorgan Formulas [llango’21], DNFs [Masek’79]

Can we use ideas like what Ilango used for Formulas?

 Not sure, as BPs are very good in re-using some of its states (similarly to circuits)

But possibly showing the reduction from partial 1-BP minimization to total
1-BP minimization

Next steps: connections to other results

MBPSP, similarly to MCSP, is a sparse language

* Existence of OWF is equivalent to hardness-on-average of a [Liu, Pass’23]
sparse language
e Better-than-linear LB for some sparse language [Chen, Jin, Williams’19]

=> NP ¢ SIZE[n*] for all k

Can we show any connections specific to MBPSP?

Next steps: 0aBPs

In our proof we use a very weak class of BPs: once-appearance BPs
How powerful is this class of BPs?

* Every read-once formulas over basis without XOR (and its negation) can be
converted to a once-appearance BP of the same or smaller size

* (y Ax)V (zA—x) can be computed by a once-appearance BP, but cannot be
computed by read-once DeMorgan formulas

Any other connections?

Recap

e Partial MBPSP is ETH hard

* Holds for various restricted versions of BPs such as OBDDs, 1-BPs, k-BPs

e Unconditional 1-NBP hardness of BP minimization for general and
restricted BPs

* NP- and coNP-hardness of compressing branching programs

23

