# Partial Minimum Branching Program Size Problem is ETH-Hard 

## Ludmila Glinskih

Based on joint work with Artur Riazanov (EPFL)

Meta-Complexity Reunion
Simons Institute for the Theory of Computing
April 15, 2024

## Minimum Circuit Size Problem

## Input:

| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | $\ldots$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- truth table of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\} \quad$ Truth table of $f$ of length $N=2^{n}$
- size parameter $s$


## Output:

yes, if $f$ can be computed by a circuit of size at most $s$ no, otherwise


## Minimum C-Circuit Size Problem

What other circuit types we may consider?

Input:

| 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | $\ldots$ | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- truth table of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$

Truth table of $f$ of length $N=2^{n}$

- size parameter $s$

Output:
yes, if $f$ can be computed by a $C$-circuit of size at most $s$ no, otherwise


## Hardness of C-MCSP for various circuit classes

NP-hardness is known for $C=$

- DNF
[Masek'80]
- DNF o XOR
[Hirahara, Oliveira, Santhanam'19]
- ACO formula

```
                                [llango'20]
```

ETH-hardness is known for DeMorgan Boolean formulas

This work: what happens if we consider $C$ as Branching Programs?

## Branching program

- Branching Programs (BPs) represent Boolean functions:
- directed graph without cycles
- one source
- two sinks: labeled with 0 and 1
- all other vertices labeled with variables
- values of variables on edges
- Size of a BP is the number of vertices
- k-BP: on every path every variable occurs no more than $k$ time

- Oblivious 1-BP (OBDD): an ordered version of 1-BP


## Complexity class with logarithmic space



LBs on the size of BP representation imply space-complexity LBs

## Branching program minimization

Minimization of OBDD and 1-BP is NP-hard

- Given $f$ as an OBDD find an equivalent OBDD of size $s$
- Given $f$ as a 1-BP find a 1-BP of size $s$
- Given a set of pairs $\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{t}, f\left(x_{t}\right)\right)$
- Find an OBDD of size $s$ consistent with $f$ given an order of variables
- Approximate the min size of a 1-BP consistent with $f$
[Sieling'02]

There exists a $O\left(3^{n}\right.$ poly $\left.(n)\right)$-time algorithm for OBDD-MCSP

$$
\text { input length } N=2^{n}
$$

## Hardness of branching program minimization

Theorem: assuming Exponential Time Hypothesis every Turing machine computing Partial Minimum Branching Program Size Problem requires time $N^{\Omega(\log \log N)}$
holds also for minimizing
1-BP, k-BP, OBDD

## Partial minimization problems

Minimizing the size of

- DNF is NP-hard [Macek'79]
- DeMorgan Formula is ETH-hard [Ilango'21]
- Partial MBPSP is ETH-hard [this work]
- Partial MCSP is ETH-hard [Ilango'20]
- Partial MCSP is NP-hard under randomized reductions [Hirahara'22]


## Proof idea of hardness of MBPSP*

Theorem: assuming Exponential Time Hypothesis every Turing machine computing MBPSP* requires time $N^{\Omega(\log \log N)}$

We use the same proof structure introduced by llango for showing ETH-hardness of MCSP*


## ( $\mathrm{n} \times \mathrm{n}$ )-Bipartite Permutation Independent Set



- Graph with $2 n \times 2 n$ vertices,
- Edges exist only between vertices from two quadrants
- Determine whether there exists a set with one vertex from every row, and one vertex from every column, such that
- These vertices are from the two quadrants
- These vertices form independent set


## The hardness reduction



Key lemma: there exists a total function consistent with $\gamma_{G}$ which can be computed by a branching program of size $\mathbf{6 n} \Leftrightarrow G$ is a yes-instance of ( $n \times n$ )-BPIS

## The hardness reduction




Truth table of a partial function $\gamma_{G}$ that depends on $6 \boldsymbol{n}$ variables

Key lemma: there exists a total function consistent with $\gamma_{G}$ which can be computed by a branching program of size $\mathbf{6 n} \Leftrightarrow G$ is a yes-instance of $(n \times n)$-BPIS

Idea of llango's proof for circuit and formulas:
$\gamma_{G}$ depends on $6 n$ variables $x_{1}, \ldots, x_{2 n}, y_{1}, \ldots, y_{2 n}, z_{1}, \ldots, z_{2 n}$
a good permutation in $G$ exists iff we can compute $\gamma_{G}$ as $\vee\left(\left(y_{i} \wedge x_{k}\right) \vee z_{i}\right)$

## The hardness reduction

Key lemma: there exists a total Boolean function consistent with $\gamma_{G}$ which can be computed by a branching program of size $6 n \Leftrightarrow$ $G$ is a yes-instance of $(n \times n)$-BPIS


- $\gamma_{G}$ can be computed by a very restricted BP in which every variable occurs at most once

We call such BPs once-appearance BPs

- As $\gamma_{G}$ is sensitive in all variables that $\operatorname{MBPSP}^{*}\left(\gamma_{G}\right)=6 n$


## The hardness reduction

If there exists a once-appearance BP computing $\gamma_{G}=>$ we can extract a permutation on $[2 n]$ corresponding to an independent set in $G$ from such BP
$\gamma_{G}$ depends on $6 n$ variables $x_{1}, \ldots, x_{2 n}, y_{1}, \ldots, y_{2 n}, z_{1}, \ldots, z_{2 n}$

A once-appearance BP for $\gamma_{G}$ has a very specific shape:

- Topological sort of the nodes forms groups of $x y z$-triplets
- In each such triplet $y$ and $z$ have the same index
- If for every triplet $x_{k}, y_{i}, z_{i}$ we map $k \rightarrow i$, we get a bipartite permutation set in $G$


## Corollaries: ETH-hardness of $k$-BP minimization

We showed that it is hard to distinguish whether $\gamma_{G}$ can be represented by a onceappearance BP or not

Corollary 1: assuming Exponential Time Hypothesis for every $k$ every Turing machine computing Partial Minimum $k$-BP Size Problem requires time $N^{\Omega(\log \log N)}$
or OBDD

## Corollaries: 1-NBP complexity

Corollary 2: size of 1-NBP computing MBPSP is $N^{\Omega(\log \log N)}$


## Corollaries: NP and coNP-hardness

Corollary 3: the problem of compressing an input partial BP to a specific size is NP and coNP-hard
coNP-hardness


$$
\phi \in U N S A T_{4}
$$

This partial function can be easily computed by a 2-BP over $\{0,1, *\}$ of polynomial size and can be compressed to a BP of linear size iff $G$ is in BPIS

This total function can be easily computed by a 4 -BP over $\{0,1\}$ of size 0 if the formula $\phi$ is unsatisfiable

## Next steps: hardness of total MBPSP

## Extend this result to total MBPSP

- Already shown for DeMorgan Formulas [Ilango'21], DNFs [Masek'79]

Can we use ideas like what Ilango used for Formulas?

- Not sure, as BPs are very good in re-using some of its states (similarly to circuits)

But possibly showing the reduction from partial 1-BP minimization to total 1-BP minimization

## Next steps: connections to other results

MBPSP, similarly to MCSP, is a sparse language

- Existence of OWF is equivalent to hardness-on-average of a sparse language
- Better-than-linear LB for some sparse language
[Liu, Pass'23]
[Chen, Jin, Williams'19]

Can we show any connections specific to MBPSP?

## Next steps: oaBPs

In our proof we use a very weak class of BPs: once-appearance BPs How powerful is this class of BPs?

- Every read-once formulas over basis without XOR (and its negation) can be converted to a once-appearance BP of the same or smaller size
- $(y \wedge x) \vee(z \wedge \neg x)$ can be computed by a once-appearance BP, but cannot be computed by read-once DeMorgan formulas

Any other connections?

## Recap

- Partial MBPSP is ETH hard
- Holds for various restricted versions of BPs such as OBDDs, 1-BPs, k-BPs
- Unconditional 1-NBP hardness of BP minimization for general and restricted BPs
- NP- and coNP-hardness of compressing branching programs

